TAP CHI PHAT TRIEN KHOA HOC & CONG NGHE: _ 91
CHUYEN SAN KINH TE - LUAT VA QUAN LY, TAP 2, SO 1, 2018

On some nonlinear dependence structure in
portfolio design

Nguyen Phuc Son, Pham Hoang Uyen, Nguyen Dinh Thien

Abstract—Constructing portfolios with high
returns and low risks is always in great
demand. Markowitz (1952) utilized correlation
coefficients between pairs of stocks to build
portfolios satisfying different levels of risk
tolerance. The correlation coefficient describes
the linear dependence structure between two
stocks, but cannot capture a lot of nonlinear
independence structures. Therefore, sometimes,
portfolio performances are not up to investors'
expectations. In this paper, based on the theory
of copula by Sklar (see [19]), we investigate
several new methods to detect nonlinear
dependence structures. These new methods
allow us to estimate the density of the portfolio
which leads to calculations of some popular risk
measurements like the value at risk (VaR) of
investment portfolios. As for applications,
making use of the listed stocks on the Ho Chi
Minh city Stock Exchange (HoSE), some
Markowitz optimal portfolios are constructed
together with their risk measurements.
Apparently, with nonlinear dependence
structures, the risk evaluations of some pairs of
stocks have noticeable twists. This, in turn, may
lead to changes of decisions from investors.

Keywords—Portfolio  design, data science,
dependence structure, copula, risk, stocks, return,
measure.

1 INTRODUCTION

INCE the birth of stock exchanges, investors
have been constantly seeking out optimal
portfolios. One of the key characteristics of a good
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portfolio is a reasonably low risk. All sort of
techniques, from conventional wisdoms like "not
putting all eggs into one baskets" to highly
computational tools like neural network, have been
tried to address this issue. Poor descriptions of
dependence structures between pairs of stocks or
among multiple stocks accounts for unreliable risk
estimations of a majority of methods, hence, leads
to unsatisfactory portfolios. Markowitz (1952) was
probably the first person who incorporated
dependences into portfolio designs. However, his
work deals with linear dependences only while, in
reality, most relations between stocks are
nonlinear. In this paper, based on the concept of
copula by Sklar (1959), dependence structures of
certain pairs of stocks from the Ho Chi Minh Stock
Exchange (HoSE) from July 2000 to July 2017 are
described, and hence, empirical distributions of
portfolios are obtained. That enables us to compute
values at risk of various pairs of stocks with
nonlinear dependences. For comparison purpose,
the traditional wvalues at risk with linear
correlations are also included. The VaRs of
portfolios from the stocks listed on HoSE show
significant  differences between the linear-
dependence version and the nonlinear-dependence
one which indicates the existence of crucial
nonlinear structures.

2 LITERATURE REVIEW

In 1994, the concept of Value at Risk, VaR, was
introduced with drums and cymbals to answer the
question at what value of the investment the risk is
equal to a desired percentage point (Szego, 2002).
The aggregate VaR is computed using linear
correlation, which means relying on the
assumption of multivariate normality of returns
(Cherubini and Luciano, 2001). Recall that VaR is
the a-quantile of the distribution

VaR, (S)=FE~* (o) =inf {s []: Fs(s)> [}
where Fs is the distribution of S. Typical values
of the level a are 0.9, 0.95, or 0.99.
Since then, VaR has become a standard measure
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of risk in financial markets. Besides, it is being
used increasingly by other financial and even
nonfinancial firms (Berkowitz and O’Brien, 2002).
Although the VaR concept is very simple, its
calculation is not easy (Jorion, 2006).

To calculate VaR, Arzac and Bawa (1977),
Mittnik and Paolella (2000) made an assumption
that the return of interest is normally distributed,
however, this assumption was challenged in some
later work. A lot of research has been done on
alternative methods. For instance, Jorion (2006)
suggested new methodologies to calculate a
portfolio VaR are: (i) the variance—covariance
approach, also called the parametric method, (ii)
the Historical Simulation (Non-parametric
method) and (iii)) the Monte Carlo simulation,
which is a Semiparametric method. In practice, on
studying VaR for traders with both long and
short positions, Giot and Laurent (2003) found that
the returns should not be modeled by either the
normal or student ¢ distributions. That leads to the
needs to measure portfolio risks where the return
distributions are non-normal, see (Artzner et al.,
1997, 1999; Favre and Galeano, 2002)

In another line of research, Christoffersen
and Pelletier (2004) realized that existing
backtesting methods have relatively low power in
realistic small sample settings. They explored
some new tools to backtest based on the duration
of days between the violations of the VaR via
Monte Carlo simulation.

On the other hand, Reboredo (2013), using gold
as a hedge against inflation, succeeded in reducing
portfolio risk via modeling the dependence
structure between gold and the USD through
copula functions. In the same vein, Markowitz
(2014) confirmed that the normality assumption
are totally inadequate when applied to distributions
of financial return or to distributions of quadratic
utility functions in modern portfolio theory. These
results strongly support earlier work by Levy and
Markowitz (1979); in short, the study had two
principal objectives: (1) to see how good mean—
variance approximations are for various utility
functions and portfolio return distributions; and (2)
to test an alternate way of estimating expected
utility from a distribution’s mean and variance.

Risk analysis, applying copula theory has also
been dealt with in the financial literature. Bob
(2013) estimated VaR for a portfolio combining
copula functions. Siburg et al (2015) proposed to
forecast the VaR of bivariate portfolios using

copula which are calibrated to estimates of the
coefficient of lower tail dependence.

There were much research centered on the
application of a concept in the study of
multivariate distributions, the copula, to the
investigation of dependent tail events. (Hien et al,
2017).

3 COPULA

Dependence structures and measurements of
dependence structures are two mainstreams in
correlational study. One of the most notable work
is a novel measure of monotonicity dependence by
Schweizer and Wolf (1981) with the use of the

L? - metric d; (C,P) where C is any copula and
D

P is the product copula. Furthermore, Stoimenov
constructed another measure @(C) to capture
mutual complete dependences (MCD) using a
Sobolev metric d _(C,P). Lately, Hien et al
(2017) has devised a new dependence measure
which can detect independence, comonotonicity,
countermonotonicity relations between random
variables.

In another line of research, Hien et al (2015)
invented a nonparametric dependence measure for
two continuous random variables X and Y with a
copula as follows:

Ac)=lcly—21c-MI2

where I C |l s is the adjusted Sobolev norm for

copula C. In detail, the norm is defined as follows:

1/2
o 9C? (u,v)  0C? (u,v)
(IC]ls = (/AH]Z [ 90 + P dudr

The authors also provide two practical
algorithms to compute A(C) in applications. The

first one is used when we have a close-form
formula for the copula C, and the second one is for
empirical copula C estimated from data.

The recent literature provides strong and rich
evidence of return correlations among stocks and
between stocks and bonds (Kim et al., 2006).
According to Righi et al. (2015), the bivariate
copula framework offers more flexibility than the
traditional methodologies like the correlation,
VaR. In this work, we utilize some of the most
popular families of copulas to model dependencies
between pairs of stock returns listed on HoSE.
Based on these calculations, we evaluate risks of
Markowitz optimal portfolios. In the process, we
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also explore some new copulas constructed by
applying the Wang distortion functions to classical
copulas. The values at risk based on linear
correlations and the values at risk based on
nonlinear correlations show clear differences. That
proves the necessity of nonlinear dependence
structure on designing portfolios.

4 METHODOLOGY

In order to compare the portfolio-risk
evaluations between the classical method based on
linear correlation and our new method based on
copulas, we first select weights for stocks to form
optimal portfolios using the classical work of
Markowitz. Then, we proceed by calculating the
classical VaR and estimating the empirical copulas
to build the empirical density function for our
portfolios, hence obtaining VaR for the nonlinear
dependence. Below are the concrete steps:

Step 1: Calculate the log returns of stocks by

the formula: ]n{ B J
t—1

Step 2: Calculate linear (Pearson) correlation
coefficient between each pair of stock returns by
the formula:

s(X.¥) = Cov [X.¥)/(si.s3)%°

Where: Cov[X,Y] is the sample covariance of 2
random variables X and Y.

and sx and sy are the standard deviations of the
corresponding stocks X and Y, respectively

Step 3: Select pairs of stocks with the biggest
correlation coefficient to construct some portfolios
and estimate the empirical density functions of
those portfolios.

Step 4: Calculating Values at Risks of the
portfolios in both the classical and the copula
ways.

5 DATA

Daily adjusted closing prices of listed
companies on HoSE from the first day of trading
up to 8/8/2017 are used in our research. However,
in order to stabilize the time series, we eliminated
all "debut" stocks which were listed after
01/01/2016. Thus, there are 313 stocks considered
in our study.

6 EMPIRICAL STUDIES

In this part, we illustrate the differences of
density functions of portfolios when using linear

correlation (p)  versus copula ([J). After
calculating linear correlations  for all possible
pairs in our list of 313 stocks, we select two pairs
with highest absolute correlations to form
portfolios; in particular, one pair has highest
positive and one has highest negative correlations.
Then, we compare the empirical distribution with
the classical linear correlation and the empirical
distribution with copula. Finally, remarkable
differences in risk measures via VaRs of the two
methods are highlighted.

6.1 Types of Graphics

Table 1 below show the p and [ value of pairs
of stocks which most positive and negative
correlation s(X,Y).

TABLE 1
CORRELATION OF STOCKS
Linear
Pair of stocks correlation Copula
coefficient
SSI (Sai Gon Securities
Incorporation) vs
HCM (Ho Chi Minh City 0-80035 0.690189
Securities Corporation)
ACL (Cuu Long Fish Joint Stock
Company) vs STK (Century -0.12196 0.028588

Synthetic Fiber Corporation)

Source: Research result

SSI and HCM are in the same industry and both
are big companies in Vietnam. That is the reason
why their returns have the same systematic
behaviors with respect to the stock market. So, a
strong relationship between SSI and HCM comes
at no surprise, and this relationship can easily be
detected by various means. Meanwhile, ACL and
STK belong to two different industries which
partially explain why their periodicities and
characteristics differ. These, in turn, lead to a
much more complex relationship between them. In
particular, their returns are negatively associated in
the stock exchange.

In the second row, the linear correlation shows a
weak negative association between ACL and STK
while the copula shows a weak relationship in the
opposite direction. This difference definitely
affects the portfolio constructions greatly since it
changes all the portfolio risk calculations, and
hence alters the expected returns and so on. To
illustrate the point, we form the portfolios for the
two pairs using the Markowitz's method and
perform the risk calculations in both the
correlation and copula ways.

Table 2 below shows the descriptive statistic of



94 SCIENCE & TECHNOLOGY DEVELOPMENT JOURNAL:
ECONOMICS - LAW AND MANAGEMENT, VOL 2, NO 1, 2018

daily returns of 4 stocks.

TABLE 2

DESCRIPTIVE STATISTIC

HCM SSI ACL __ STK
Observations 2053 2053 344 344
Minimum 00695  -0.0683  -0.0697 -0.1176
Median 00000  0.0000 00000  0.0000
Mean 00011 00005 00001 -0.0008
Quartile 3 00138 00114 00110 00158
Maximum 00700 00692 00700  0.1151
Standard 00248 00219 00244  0.0359
deviation
Skewness 01784 02514 -0.0459 02307
Kurtosis 01590 05158  1.0322  1.0759

6.2 Values at risk

Below are the stock weights for two portfolios
determined by the classic theory of Markowitz.

TABLE 3
STOCK WEIGHTS
Portfolio 1 Portfolio 2
Stock HCM SSI ACL STK
Weight 0.22 0.78 0.29 0.71

To better understand the distributions of the
returns of four stocks, we plot the four density
functions in Figure 1 below.
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Figure 1. Density functions and correlations of returns
Source: Research result

Note that the empirical distributions of the four
returns don't seem to follow normal distributions.
Also observe that there is a strong positive
correlation between 2 stocks in the financial
sector, but there is a negative correlation between
ACL (Food Industry) and STK (Textile Industry)
in two different industries.

Note that in Portfolio 1, HCM and SSI are
positively correlated and the weight for HCM is
much lower than that of SSI because HCM suffers
from much higher volatility. However, in Portfolio
2, although ACL has 47,1% lower volatility than
STK, only 29% are allocated to ACL. That means
volatility is of paramount importance when the
relationship between stocks are positive, but is of
little importance when the relationship is negative.

The following charts show the distributions of
Portfolio 1 and Portfolio 2 in two scenarios: the
left-hand side is the density plots for the portfolios
using normal joint densities (with correlation r),
and the right-hand side is the plots for the
portfolios using empirical densities with copula.
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Figure 2. Density distribution of portfolio 1
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Histogram of ACL and STK portfolio
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Figure 3: Density distribution of portfolio 2

There are noticeable dissimilarities between the
density plots. That explains the differences in the
VaR results when the classical normal
distributions are used and when the copula-based
distributions are used. The detailed calculations for
the two portfolios are presented in the Table 4
below.

TABLE 4
VAR FOR PORTFOLIO 1 AND PORTFOLIO 2 WITH 3 LEVELS OF CONFIDENCE
Portfolio 1 Portfolio 2
Confidence level 90% 95% 99% 90% 95% 99%
Linear correlation (1) 0.0166 0.0219 0.0369 0.0394 0.0456 0.0552
Copula (2) 0.0227 0.0251 0.0304 0.0388 0.0432 0.0534
Different (1) vs (2) -26.95% -12.82% 21.39% 1.43% 5.65% 3.48%

Source: Research result

The table 4 presents the values at risk for
Portfolio 1 and Portfolio 2 with 3 levels of
confidence, namely 90%, 95% and 99%. Each
column contains the VaRs computed from linear
dependence (correlation) and nonlinear
dependence (copula) together with a measurement
for the relative differences between the two VaRs.
To be precise, the last row of the table is calculated
using the following formula.

VaR(correlation) —VaR(copula)
VaR(copula)

Recall that, in Portfolio 1, both components
belong to the same industry and are positively
associated. The volatilities of the two stocks have
tremendous impacts on the allocation of weights in
the portfolio, and this leads to a fairly large
relative difference between the two versions of
VaRs. Therefore, investors should take extra
precautions when using VaR for risk management

in this case since there are dependences other than
the linear one lurking around. For Portfolio 2, the
situation is better, the relative differences are
smaller since the two stocks are negatively
associated so their volatilities tend to cancel each
other out. To sum up, in reality, there are always
stocks with positive associations in a portfolio.
Thus, finding a suitable measures of dependency is
fundamentally important for risk management.

7 CONCLUSION

Value at Risk plays a crucial role in financial
risk management, especially in portfolio
management. In practice, its computations usually
relies on the normality assumption of the portfolio
distributions with linear dependences between
pairs of assets. This, in turn, is used to calculate
the optimal weights for the stock components of
portfolios. Nevertheless, a number of experts have
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pointed out that the linear dependence structures
are no longer adequate in modern financial market.
Therefore, adoption of the new techniques is
inevitable to avoid unwanted consequences later.
In this research, we analyse the dependence
structure between financial assets and additionally
compute the VaR, which is of considerable
importance in risk management

Since the pioneering work of Sklar (1959),
although having been extensively applied in a
large number of applications in business and
finance, copulas still have huge potentials for
making significant impacts in various problems,
especially in risk management. Considerable
advancements in computing powers allow copulas
to become practical in areas where a deep
understanding of dependence structures is crucial,
but used to be intractable in the past due to high
computational complexity. Our work here provides
examples where classical approaches give very
different results compared to those obtained via
copula. In particular, if two stocks are strongly
positively associated, the VaRs of the two methods
differ as high as 26.95%

Our plan in the near future is to design portfolios
of more than two stock components. It requires
pulling in multivariate copulas to describe higher
dimensional dependence structures. One of the
challenges is how to implement these with real
market data. Some important families like the
Clayton canonical vine copulas (CVC) which
capture lower tail dependence are feasible up to
dimension 12. Another direction of research is to
bring in other way to model dependence such as
the probabilistic graphical model which has been
extremely successful in computer sciences and
engineering.

This research is funded by University of
Economics and Law Ho Chi Minh City research
with contract number CS/2017-08.
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Nghién clru vé mot sO cau tric phu thudc phi
tuyen tinh trong thieét ké danh muc dau tu
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Pham Hoang Uyén?, Nguyén Dinh Thién?

'Vién Nghién ctru phit trién TP.HCM
*Truong Pai hoc Kinh té - Luat, PHQG-HCM
“Téc gia lién hé: sonnp@uel.edu.vn

Ngay nhén ban thao: 21-8-2017, Ngay chép nhan dang: 13-10-2017; Ngay dang: 15-7-2018

Tom tit—Thiét ké cac danh muc ddu tw c6 loi nhuin
cao va rui ro thép ludn la doi twgng cia cic nha
nghién ciru. Markowits (1952) sir dung cac hé )
twong quan giira cac cap co phleu aé xay dung cac
danh muc théa mén ciac mire riii ro ¢6 thé chip nhan
dugc. Hé sb twong quan mé ta cdu tric phu thude
tuyén tinh giira hai ¢6 phiéu nhung khong thé tich
hop duge cac chu tric doc lap phi thuyén tinh. Vi
vay, hiéu qua cia danh muc diu tw déi khi khong
dap ung dugce ky vong, ciia nha dau tu. Trong bai viét
nay, dwa trén ly thuyét copula ciia Sklar (xem [19]),
ching toi klem tra mt so phwong phap méi dé xac
dinh céc clu tric phu thudc phi tuyén tinh. Nhiing

phuong phap méi nay giup chiing t6i wée lwgng duge
phan bé ciia cac danh muc, tir d6 cho phép ap dung
cic phuong phap wée lwong rii ro phd bién cia cac
danh muc diu tw nhw VaR. Ching t6i ap dung
phwong phap nay dbi véi cac cé phiéu niém yét trén
San Giao dich C6 phiéu TP.HCM (HoSE), xdy dung
mét s6 danh muc t6i wu theo phwong phap cia
Markowitz cang vé6i cac phwong phap wéc tinh rii
ro. Ket qua cho thiy, véi cac cAu truc phu thuoc phi
tuyen tinh, wéc tinh rii ro ciia mot s6 cap ¢b phleu co
nhitng tic dong dang chi ¥ dén danh muc déu tw.
Két qua nay din dén thay ddi cac quyét dinh ciia nha
diu tu.

Tir khéa—Thiét ké danh muc diu tw, khoa hoc dif li¢u, ciu triic phu thudc, copula, rii ro, ¢ phiéu,
lgii nhuén, phwong phap.
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