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ABSTRACT
Stock market is an important capital mobilization channel for economy. However, the market has
potential loss due to fluctuations of stock prices to reflect uncertain events such as political news,
supply and demand of daily trading volume. There are many approaches to reduce risk such as
portfolio construction and optimization, hedging strategies. Hence, it is critical to leverage time
series prediction techniques to achieve higher performance in stock market. Recently, Vietnam
stock markets have gained more and more attention as their performance and capitalization im-
provement. In this work, we use market data from Vietnam's two stock market to develop an in-
corporated model that combines Sequence to Sequence with Long-Short Term Memory model
of deep learning and structural models time series. We choose 21 most traded stocks with over
500 trading days from VN-Index of Ho Chi Minh Stock Exchange and HNX-Index of Hanoi Stock
Exchange (Vietnam) to perform the proposed model and compare their performance with pure
structural models and Sequence to Sequence. For back testing, we use our model to decide long
or short position to trade VN30F1M (VN30 Index Futures contract settle within onemonth) that are
traded on HNX exchange. Results suggest that the Sequence to Sequence with LSTM model of
deep learning and structural models time series achieve higher performance with lower prediction
errors in terms of mean absolute error than existing models for stock price prediction and positive
profit for derivative trading. This work significantly contribute to literature of time series prediction
as our approach can relax heavy assumptions of existing methodologies such as Auto-regressive–
moving-average model, Generalized Auto-regressive Conditional Heteroskedasticity. In practical,
investors from Vietnam stock market can use the proposed model to develop trading strategies.
Key words: LSTM, Seq2Seq, Structural models, Hybrid model

INTRODUCTION
Describing the behavior of the observed time series
plays a critical role to understand the past and pre-
dict the future in many disciplines. In quantitative fi-
nance, time series prediction is a very important task
for risk management to measure of the uncertainty of
investment return 1, portfolio construction for hedge
fund2, high-frequency trading3.
However, creating high accuracy prediction of time
series with low error is not an easy job, due to high
fluctuations of stock market. From this perspective,
there have been many methods that were proposed to
study historical patterns of time series data to crate
high quality of stock price prediction. To measure
quality of a prediction, forecast error indicators were
compute from actual price and predicted price. Mean
Square Error (MSE) or Root-Mean-Square Error are
populated indicators for the measurement works.
In terms of time series prediction, there are many ap-
proaches to address the matter. However, there are
two methods which have been widely adopted. The

first one is univariate analysis to capture volatility.
They include autoregressivemodels (AR(p)), moving-
average models (MA(q)), combination of autoregres-
sive and moving-average models (ARMA(p, q)) for
linear processes, and generalized autoregressive con-
ditional heteroscedastic (GARCH(p, q)) for nonlinear
processes to model return of stocks4. By differencing,
a transformation from price to return of a stock poses
a problem. Unobserved components (e.g. seasonal
component, trend) of raw series were eliminated. Fur-
thermore, differencing is hard to interpret and select
adequate model. Hence, the second approach have
been proposed to fill the gap5. It is called Structural
Time Series Models which comprises trend compo-
nent, seasonal component, and a random irregular
component to model a time series without differen-
tiation.
With revolution of computational power, beside sta-
tistical models, machine learning, and deep learn-
ing models have been widely adopted to solve many
problems from academic to industry. In financial
time series prediction, we can leverage these models

Cite this article : LuuQ, Nguyen S, PhamU. Time series prediction: A combinationof LongShort-Term
Memory and structural time series models. Sci. Tech. Dev. J. - Eco. LawManag.; 4(1):500-515.

500



Science & Technology Development Journal – Economics - Law andManagement, 4(1):500-515

to achieve higher accuracy. In deep learning, mod-
els are considered black-box with billions of param-
eters. However, feature engineering is still an im-
portant work to improve model accuracy 6. Further-
more, neural network like Long-Short Term Memory
of deep learning can link current event to previous
events while Structural Time Series Models only de-
pends on previous event. Hence, it is critical to com-
bine these two approaches to address the limitations.
In this work, we step-by-step describe procedures to
perform fitting data with Structural Time SeriesMod-
els, Sequence to Sequence model, and the combina-
tion of these two models. We report the results of
the fitting process to 21 stocks listed on Ho Chi Minh
Stock Exchange, then we compare the prediction re-
sults. Furthermore, we use proposed model to auto-
matically trade VN30F1M futures contract on HaNoi
Stock Exchange for back testing.

LITERATURE REVIEW

Trend Models of Structural Time Series
Models

Decomposition of time series is an important pro-
cedure. Traditionally, regarded as a functional de-
pended on time and deterministic, non-stationary
time series are often detrended by applying difference
to construct models from the processed data. It is
suggested that this procedure may lead to mislead-
ing results if trend is not deterministic7. A structural
time series models are a decomposable time series in
terms of three components of trend, seasonality and
cycle8,9. It is defined as following equation:
y(t) = g(t)+ s(t)+h(t)+ εt (1)
where t = 1, . . . ,T,, and g(t) is stochastic and non-
periodic changes trend, s(t) is a seasonal stationary
linear process with periodic changes (e.g. quarterly,
yearly seasonality), and h(t) is a cyclical frequency of
time occurring on potentially irregular schedules over
one or more days10.
Many researches strongly support the model in prac-
tice have been carried out. For instance, Harvey
shown that class of structural models have several ad-
vantages over the seasonal ARIMA models adopted
and are applicable to model cycles in macroeconomic
time series5,11. Kitagawa, Gersch decomposed time
series into trend, seasonal, globally stationary autore-
gressive and observation error components with state
space Kalman filter and used Akaike minimum AIC
procedure to select the best of the alternative state
space models12 Taylor, Letham use structural models
for forecasting of business time series 10.

The local linear trend is a process can be regarded as a
local approximation to a linear trend. The stochastic
linear process can be described as:

y(t) = g(t)+ εt

g(t) = g(t −1)+β (t −1)+ηt (2)
β (t) = β (t −1)+ζt ′

where the εt ∼ NID(0,σ2
ε ), t = 1, . . . ,T, ηt ∼

NID(0,σ2
η ), and ζt ∼ NID(0,σ2

ζ ) are dis-
tributed independent of one another and white
noise disturbance terms with mean zero and vari-
ances σ2

ε , σ2
η and σ2

ζ respectively13. Koopman and
Ooms14 proposed trend with stationary drift process
to extend local linear trend process by adding a sta-
tionary stochastic drift component:

g(t) = g(t −1)+β (t −1)+ηt (3)

βt = (1−φβ )
−
β +φβ βt +ζt

with autoregressive coefficient 0 < φβ ≤ 1. However,
there is a drawback with this approach thatmake such
drift processes are difficult to identified. It requires
very large data samples.
Taylor and Letham10 developed new type of trend
models. Accordingly, they suggested that there are
two types of trendmodels: a saturating growthmodel,
and a piecewise linear model (see Figure 1). Saturat-
ing growth model is characterized by growth rate and
limitation of population growth. By applying nonlin-
ear logistic function:
g(t) = C

1+e−k(t−m) (4)
with e is the natural logarithm base, m is the value
of sigmoid middle point, C is the maximum capac-
ity value, k is growth rate of the curve. From that
point of view, it cannot be captured movement in dy-
namic world due to nonconstant growth of maximum
capacity value and rate of the curve. Hence, to over-
come the issues, Taylor and Letham defined a time-
varying of maximum capacity C and growth rate k.
Suppose that we explicitly define S changepoints at
times s j, j = 1, . . . ,S,, and a vector of rate adjustments
δ ∈ RS with δ j is the change in rate that occurs at time
s j

10. The saturating growth model is defined as:
g(t) = C(t)

1+e−(k+a(t)⊺ δ )(t−(m+a(t)⊺ γ) (5)
where

γ j = (s j −m− ∑i< j γl )(1− (

k+∑
l< j

δl

∑l≤ j δl
)

a j (t) = {1,i f t≥s
0,otherwise

Maximum capacityC(t) is adopted from external data
source.
From saturating growth model, we can define piece-
wise linear model without exhibit saturating growth:
g(t) = (k+a(t)T δ )t +(m+a(t)T γ) (6)
like saturating growth model, k is the growth rate, δ
has the rate adjustments, m is offset parameter, and γ j

is set to −s jδ j to make the function continuous.
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Figure 1: Fitted daily stock price of Ho Chi Minh City Securities (HCM) stock with piecewise linear model
from January 3rd , 2017 to February 26th, 2019 in log-scale.

Deep Neural Network

Recurrent Neural Network
Despite powerfulness of deep neural networks, tra-
ditional neural networks have two drawbacks15 .
Firstly, main assumption of standard neural networks
is independence among the samples (data points). On
the other words, traditional neural networks cannot
link current event to previous events to inform later
ones due to it stateless preservation. In time series
analysis, it is widely accepted that current value de-
pends on past values4. It is unacceptable because
the independence assumption fails. Secondly, tra-
ditional neural networks require fixed-length vector
of each sample. Hence, it is critical to develop a
new generation of deep neural networks. Rumelhart,
Hinton, Williams (p.533) introduced a new learning
procedure for neuron networks with backpropagation
which can capture internal hidden state to “repre-
sent important features of the task domain”16. Fur-
thermore, with current development, recurrent neu-
ral network can model sequential data with varying
length and time dependences. A simple feed forward
recurrent neural network is defined 17:

h(t) = σ(W hxx(t)+W hhht−1 +bh) (7)
ŷ(t) = so f tmax(W yhht + by) (8)

where h(t) is hidden state of input data point at time
t. Clearly, h(t) is influenced by h(t−1) in the networks
previous state. The output ŷ(t) at each time t is calcu-
lated given the hidden node values h(t) at time t. W yh

is weight matrix of input-hidden layer andW hh is the
matrix of hidden-to-hidden transition. In most con-
text, h(0) is initialized to zero. Haykin, Principe, Se-
jnowski, Mcwhirter suggested that RNN can achieve
stability and higher performance by nonzero initial-
ization18. By comparison to traditional fully con-
nected feedforward network, a recurrent neural net-
work takes advantage of sharing parameters across the
model that helps it learns without separately at each
position of sentence or series 19. Earlier, Jordan pro-
posed an almost like17. However, context nodes are
fed from the output layer instead of from hidden lay-
ers20. It means that Jordans neural network can take
previous predicted output into account to predict cur-
rent output.

h(t) = σ(W hxx(t)+W hh ŷ(t−1)+bh) (9)
ŷ(t) = so f tmax(W yhht + by)

In term of training, there are two steps to train a
recurrent neural network. First, the forward prop-
agation creates ŷ outputs. After that, loss function
value L(ŷk,yk) of the network of each output node
k are compute in backpropagation stage. There are
many types of loss function to measure distance be-
tween the output and the actual value of classification
problems. To minimize the distance, we need to up-
date each of the weights iteratively by applying back-
propagation algorithm 16.
The algorithm applies derivative chain rule to calcu-
late the derivative of the loss function L for each pa-
rameter in the network. In addition, weights of neural
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network are updated by gradient descent algorithm 15.
Hence, gradient of error of a neuron is calculated as:

δk =
∂L(ŷk

,yk)

(∂ ŷk )
g′k(ak) (10)

where ak = wãk + b is input to node k and ãk is in-
coming activation output of ak,g′k(ak) , is activation
function for node k. The first term ∂L(ŷk,yk)

(∂ ŷk)
expresses

how fast the cost is changing as a function of esti-
mated output. The second term g′k(ak) suggests rate
of change of gk activation function at ak . In vector-
ized form, we generalize equation (10) for any layerlth

:
δ l = ∇ŷ C⊙g′(al) (11)
In addition, from the δ l , we can compute the error
of the next layer δ l+1 as:
δ l = ((wl+1)T δ t+1)⊙g′(al) (12)
and error with respect to anyweight, bias in the neural
network:

∂C
∂wl = ŷl−1δ l (13)
∂C
∂bl = δ l

From the final layer to first hidden layer, for each
layer of the neural network, we can apply the back-
propagation and compute the error vector δ l with the
chain rule repeatedly to update weight and bias vec-
tors. In term of local minimum optimization, gra-
dient descent is utilized for finding the minimum of
cost function by updating weight and bias vectors. It
is computed as:

wl → wl − η
m ∑x δ x,l (ŷx,l−1) (14)

bl → bl − η
m ∑δ x,l

where m is number of training examples in a given
mini-batch with each training example x, η is a step
size. In practical, there are many optimizers devel-
oped to improve mini-batch gradient descent limita-
tions21. For instance, Qian22 and Yu23 accelerated
gradient was developed to relax navigating ravines
problem of stochastic gradient decent. Recurrent
neural network is a breakthrough in temporal se-
quence by adding internal state (memory) in each cell
to process sequences of inputs. In term of training, re-
current neural network parameters can be computed
and optimized by feed forward propagation and back-
propagation. For shallow network with a few hid-
den layers, the algorithm can be trained effectively.
However, with many hidden layers, it is hard to train
the network due to vanishing and exploding gradient
problem as derivatives become too small (e.g. 0 to 1
for sigmoid activation function) or too large. It only
allows the network to learn in short-range dependen-
cies and prevents from learning long-range depen-
dencies. As a result, long-short term memory net-
work architecture24, rectified linear units activation
function25, residual learning framework He, Zhang,
Ren, Sun were introduced to overcome the limita-
tion26.

Long-Short TermMemory Network
Formally identified by Hochreiter in both theoret-
ical and experimental approaches27, with involve-
ment of long-term dependencies data, back propaga-
tion algorithm of recurrent neural network is showed
that it suffers from insufficient that tends to ex-
plode or vanish through time may lead to oscillating
weights or unusable model. Not just recurrent neu-
ral network, Bengio, Simard, Frasconi28 also pointed
out that any deep feed-forward neural network with
shared weights may have vanishing gradient problem.
Hochreiter, Schmidhuber (p.6) developed a new ap-
proach called Long Short-Term Memory (LSTM) to
fill these gaps by introducing “input gate unit”, “out-
put gate unit”, and “memory cell”24. Accordingly, the
purpose of multiplicative input gate unit is to protect
memory contents from irrelevant inputs, and multi-
plicative output gate unit is to protect other units from
perturbation by currently irrelevant stored memory
contents. On the other words, with the new LSTM
architecture (see Figure 2), each cell can maintain its
state over time, and adjust input or output informa-
tion. Hence, the new type of neural network archi-
tecture is able to capture very long-term temporal de-
pendencies effectively, handle noise and continuous
values with unlimited state numbers in principle.
Since introduction, with revolution of computational
power, LSTM has been widely adopted and applied
for many difficult problems of many fields in prac-
tice and academic. This includes language model-
ing28, text classification30, language translation30,
speech recognition31. From original LSTM pro-
posed by Hochreiter, Schmidhuber24, a significant
improvement had been developed by introducing for-
get gates to reset out-of-dated contents of LSTM
memory cells32. In addition, to achieve higher ca-
pability of learning timings, peephole connections
that allows gates to look at cell state were added to
LSTM neural network. A forward pass LSTM archi-
tecture with forget gate and peephole connections is
described as33:
−
z

t
=Wζ xt +Rζ yt−1 +bζ (15)

−
z

t
=Wζ xt +Rζ yt−1 +bζ

zt = g(
−
z

t
)

i−t =Wixt +Riyt−1 + pi ⊙ ct−1 +bi

it = σ(i−t)
−
f

t
=W f xt +R f yt−1 + p f ⊙ ct−1 +b f

f t = σ(
−
f

t
)

ct = zt ⊙ i −t + ct−1 ⊙ f t

o−t =Woxt +Royt−1 + po ⊙ ct−1 +bo

ot = σ(o−t)

yt = h(ct)⊙ot
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Figure 2: Long-Short termmemory network architecture. Adopted fromHarmon, Klabjan 29.

where zt is block input, it is input gate, f t is forget gate,
ct is memory cell, ot is output gate, yt is block output.
Wz, Wi, W f , Wo ∈ RN×M are input weights;
Rz, Ri, R f , Ro ∈ RN×M are recurrent weights;
pi, p f , po ∈ RN are peephole weights; bz, bi, b f , bo

are bias weights; g, σ , h are activation functions.
Like RNN, LSTM is trained with gradient descent as
it is a differentiable function estimator34. Backprop-
agation equations of LSTM are detailed:
δyt = ∆t + Rζ τδ zt+1 + RT

i δ it+1 + RT
f δ f t+1 +

RT
o δot+1 (16)

δo−t = δyt ⊙h(ct)⊙σ ′o−t)

δct = δyt ⊙ ot ⊙ h′ (ct) + po ⊙ δ−
o

t
+ pi ⊙ δ

−
i

t+1
+

p f ⊙δ
−
f

t+1
+δct+1 + f t+1

δ
−
f

t
= δct ⊙ ct−1 ⊙σ ′(

−
f

t
)

δ
−
i

t
= δct ⊙ zt ⊙σ ′(

−
i

t

)

δ−
z

t
= δct ⊙ it ⊙g′(

−
z

t
)

δxt =W T
z tδ z̃t +W T

i δ i t +W T
f δ f t + W T

o δo t
δW∗ = ∑T

t=0⟨δ∗t ,X t⟩
δR∗ = ∑T−1

t=0 ⟨δ∗t+1,X t⟩
δb∗ = ∑T

t=0⟨δ∗t⟩

δ pi = ∑T−1
t=0 ct ⊙δ

−
i

t+1

δ p f = ∑T−1
t=0 ct ⊙δ

−
f

t+1

δ po = ∑T−1
t=0 ct ⊙δ−

o
t+1

Where * can be one of −z ,
−
i ,

−
f ,

−
o and ⟨∗1,∗2⟩ is outer

product of two vectors.
It is worth to note that peephole is not always imple-
mented as forget gate because it simplifies LSTM and
reduce computational cost without significantly scar-
ifying performance. For instance, Keras35 does not
support peephole, but CNTK, TensorFlow does sup-
port 35,36. There have been many variant versions of

vanilla LSTM architecture with minor changes. Greff
et al. found that vanilla LSTM (with forget gate and
peephole) achieve reasonably performance on various
datesets33. Despite effectiveness of LSTM, there are
many efforts to simplify the architecture as LSTM re-
quires huge computational power of hardware. Gated
Recurrent Unit (GRU), a variant of LSTM with fewer
parameters than LSTM by simplifying forget gate,
which introduced byCho et al.37 has reasonable accu-
racy. However, Britz et al. shows that LSTM still sig-
nificantly outperforms GRU38. Hence, Van der West-
huizen et al. is another attempt to save computational
costs and maintain performance of models by devel-
oping a forget-gate-only version of the LSTM with
chrono-initialized biases that achieves lightly higher
accuracy39.

Sequence to sequencemodel
Sequence to Sequence is a learning model that maps
an input sequence from a fixed-sized vector using
a LSTM to another LSTM to extract an output se-
quence. Sequence to Sequence has been widely ap-
plied in machine translation40, video captioning41,
time series classification for human activity recogni-
tion42. Bahdanau et al. used RNN Encoder-Decoder
that contains two recurrent neural networks (or long
short-term memory) to represent an input sequence
into another sequence of symbols43. One the other
words, encoder-decoder architecture is used to en-
code a sequence, decode the encoded sequence, and
recreate the sequence. The approach aims to maxi-
mize the conditional probability of output sequence
given an input sequence.
Encoder neural network transforms an input se-
quence of variable length X = x1,x2, . . . ,xT into a
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Figure 3: Encoder-Decoder architecture.

fixed-length context variable with information of the
sequence (see Figure 3). RNN is mostly used as an
encoder neural network. However, Sutskever et al.40

found that LSTM significantly outperformed shallow
LSTMs and RNN. Asmentioned, RNN and LSTMuse
previous hidden states h1,h2, . . . ,ht−2,ht−1 to create
current hidden stateht . Hence, hidden state of an in-
put sequence is defined as:

ht = f (xt , ht−1) (17)
c = k(h1,h2, . . . ,hT )

where is hidden state at time t, c is summary hidden
state of the whole input sequence, function f() can be
RNN, LSTM,GRUnetwork, or an activation function.
With summary hidden state c, given a target output
Y = y1, y2, . . . , yT ′ , instead of computing P(Y |X) di-
rectly, decoder neural network computes conditional
probability of using previous information and sum-
mary hidden state. It is formally described as:

P(y1, . . . , yT ′ |x1, . . . , yT )

= ∏T ′

t ′=1 P(yt , |c,y1, . . . ,yt ′−1) (18)
The trained sequence to sequence model can be used
to generate a sequence give an input sequence. In ma-
chine translation, reverse the order of the words of the
input sequence is necessary because it is easy for op-
timizer (e.g. stochastic gradient decent) to “establish
communication between the input and the output”40

(p.3). For the sake of nature, time series prediction
problems always have desired order as input and out-
put is straightforward sequence.

EMPIRICAL RESULTS
Data
In this study, for liquidity and fairness of trading,
we use daily price data of 21 most traded stocks that
is listed on from VN-Index of Ho Chi Minh Stock

Exchange and HNX-Index of Hanoi Stock Exchange
(Vietnam) from 05 January 2015 to 19 January 2019.
It is 1010 data points in total. We use first 965 data
points for training and the last 45 data points for test-
ing. It is 9-type of window size for out-of-sample pre-
diction. It varies from 5 to 45 with 5-step ahead. Fur-
thermore, we use daily price of VN30F1M contract
that are traded on Ha Noi Stock Exchange from 1
September 2017 to from 13 November 2018 for train-
ing, and from 14 November 2018 to 15 May 2019 for
performance validation (120 trading days).

Data Pre-processing
Beyond algorithm improvement and parameter tun-
ing, an approach to improve the accuracy of ma-
chine learning model is apply data pre-processing
techniques. For instances, these techniques are im-
puted missing values, encode categorical data, detect
outliers, transform data, and scaling data. In this
work, we perform logarithm and Box-Cox transform
to transform the input dataset. Rationally, the idea
behind the logarithm transformation is to turn prob-
abilistic distribution of raw input data from skewed
data into approximately normal. Hence, prediction
performance is improved dramatically44. However,
in some circumstances, the logarithm technique does
not generate new data with less variable or more nor-
mal. In contrast, it may lead to be more variable and
more skewed 45. Thus, it is recommended that trans-
formation techniquesmust be applied very cautiously.
Output data of the transform stage is passed to data
scaler to be normalized. There are many types of
scaling method (e.g. maximum absolute value, given
range of feature). We use min-max scaler by scaling
the input feature to a range of [0,1]. It ensures the
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large input value do not overwhelm smaller value in-
puts, then helps to stabilize neural networks46.

Detail Results

Structural Time Series
The aim of this step is to create baseline models for
evaluating prediction quality of structural time series
and sequence to sequence models with our proposed
model. Mean square error was calculated to measure
performance of each out-of-sample forecast.
We develop structural time series models as a base-
line model. For this task, we choose Prophet package
which is developed by Facebook for Python program-
ming language10. In this model, data input is a trans-
formed price of stocks in logarithm. In terms of pa-
rameter tuning, we almost use default settings except
adding monthly, quarterly, and yearly with Fourier
orders. We initialize 20, 30, 30 for Fourier orders of
monthly, quarterly, and yearly respectively. As it is
required future data would have to be known to per-
form prediction if we use Box-Cox transformation as
an extra regressor in structural time series models, we
omit the transformation procedure47. Without extra
regressor, the model can generate prediction of 21 se-
lected tickers from 5 to 45 with 5-step incrementation
window size.
As mentioned, Prophet model is structural time se-
ries models that combines trend g(t), seasonality s(t),
and irregular events. Figure 4 describes our attempt
to generate out-of-sample prediction for model qual-
ity evaluation and trend g(t) of series as a feature input
of Sequence to Sequence using Prophet model from
transformed logarithmic form and Box-Cox form of
stock price series.
In detail, for every stock v in selected list of stocks, we
transform the price to log-scale LP and Box-Cox se-
ries BC to use as an input for Prophet model P. We set
no out-of-sample prediction (W=0) to extract trend
series T from in-sample data generated by P as a
feature of Sequence to Sequence model. For perfor-
mance comparation, we set w to every 9-type W of
window size for out-of-sample prediction.

Sequence to sequenceModel
Regarding to baseline models, we also develop a Se-
quence to Sequence with LSTM architecture. We use
Keras with Tensorflow backend to create Encoder-
Decoder model to solve the sequence to sequence
problem35,36. To benefit from the efficiency of par-
allel computation for training deep learning neural
network, we train the model on virtual machine with
GPU on Google Cloud Platform.

Sequence to sequence model use states of encoder
neural network to generate prediction from decoder
neural networks. Hence, we feed normalized stock
price series to the model and generate prediction. In
Figure 5, we describe approach that we use to develop
baseline prediction with sequence to sequencemodel.
Like vanilla LSTM model for supervised learning, we
train input data with many iterations. However, we
discard output of encoder and use state and as input
for decoder. Furthermore, to create prediction for the
proposed model, we add trend series (extracted from
Figure 4) as another input feature.
The implementation is straightforward. First, like
Figure 4, we use scaled data of Box-Cox BC and log-
arithm transforms LP as input data. However, we
scale every BC and LP to range from 0 to 1 to cre-
ate x for every scaled list of stocks price X*. Further-
more, we use logarithm transformed series as target
data. We create and extract hidden states of encoder
model En with LSTM architecture and initialize de-
coder model DE with these hidden states. A main
advantage of Sequence to Sequence with LSTM over
structural time series models is that it can dynami-
cally perform prediction multiple time steps without
requiring extra data. In terms of accuracy, we found
that result of deeper LSTM model does not outper-
form shallow one. Hence, we used LSTM with sin-
gle hidden layer, with 64 cells and rectified linear unit
activation function. To prevent over-fitting, we apply
both L2 regularization and dropout. We use 0.0001
for regularization parameter lambda, rate of dropout
is 0.001 as recommended48.

Sequence to Sequence with Structural Time
SeriesModels
In this step, we combine both sequence to sequence
model and structural time series models. Specifically,
we use output dataset D (with W = 0) from Figure 5
as train data for Figure 6. On the other words, we
combine trend component of structural time series
models with price of stock in Box-Cox and logarithm
forms. Parameters of thesemodels are defined exactly
same as aforementioned baseline models. We found
that results are improved dramatically.

Results Analysis
Structural time series models was used to generate a
set of out-of-sample forecast in multiple window time
steps in log-scale (see Table 1). In terms of prediction
error, the result show thatMSE= 0.087787 (CTG at 45
time steps ahead) is highest, MSE = 0.003501 (SSI at 5
time steps ahead) is lowest. Likewise, results from Se-
quence to Sequencemodel (seeTable 2) and Sequence
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Figure 4: Algorithm structural time series analysis with Facebook Prophet library.

Figure 5: Algorithm of Sequence to Sequence.
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Figure 6: 45-day forecast of HCM.

to Sequence with Structural Time Series Models (see
Table 3) show that MSE = 0.231800 (PNJ at 45 time
steps ahead) and MSE = 0.046146 (ACB at 45 time
steps ahead) are highest, MSE = 0.000068 (CII at 5
time steps ahead) and MSE = 0.000006 (CII at 5 time
steps ahead) are lowest. Figure 6 plots prediction out-
put of models with actual data of HCM stock.
In term of back testing, by applying Figure 6, we
found that the proposed model can create positive
profit (see Figure 7). For simplicity, we do not con-
sider tax and transaction fee. From initial invested
money $1000, we get $1159.2 at the end of the test.
Specifically, we develop trading environment from
real market data with return TRR (index point) to
measure reward of the test. Agent is developed from
proposed model. For every day of 120 trading days
TD, it uses predicted return PR to choose positions.
If predicted return PR on the next two days (W=2) is
positive, we choose Long position. If it is negative, we
choose Short position. If is around zero, we hold po-
sition. Position is closed when profit PFT is bigger
than a point or the position is held more than a day
(T=2).
From univariate time series analysis perspective, we
found that structural time series models of Face-
book Prophet generate stable and high quality out-of-
sample prediction without requiring advanced tech-
niques or data assumptions. In addition, we also
found that it even achieves higher accuracy in-sample
fitted data when we add an extra regressor to struc-
tural time series models. Unfortunately, we cannot
create out-sample prediction with extra regressor. In
contrast to structural time series models, Sequence to

Sequence model with LSTM neural network cannot
create stable out-of-sample prediction. As Figure 8
point out, in some cases, Sequence to Sequencemodel
captures movement of stocks to generate high accu-
racy prediction with lower error than structural time
series models. However, the model cannot constantly
capture movement of stocks in some other cases. In
terms of computational performance, Sequence to Se-
quence model also takes more time for training and
predicting than structural time series models. It leads
to a gap to leveraging the state-of-the-art technique
for time series prediction. Fortunately, results from
Table 3 suggest that we can fill gaps of structural time
series models and Sequence to Sequence model by
adding output from structural time series models to
Sequence to Sequence model. Figure 8 show that
the model is stable and prediction error of proposed
model is almost always lowest among in threemodels.
In terms of benchmark limitation, there are some
drawbacks in this benchmark. On the one hand, it
is lack of residual analysis for each prediction. We
only compute Mean Square Error (MSE) for perfor-
mance comparison. The evaluated results are not con-
sistent enough to be fully accurate as some outlier
points as Figure 9 point out. On the other hand, al-
though the results are clear and useful when we use
MSE as an indicator for forecasting accuracy evalu-
ation, these forecasting evaluation criteria cannot be
discriminated between forecasting models when er-
rors of the forecast data are very close to each other.
Thus, the Chong and Hendry encompassing test for
nested models49 should be carried out to evaluate
the statistical significance of the forecasting models.
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Figure 7: Uncompounded daily cumulative profit of VN30F1M trading.

Table 1: Mean squared error of structural time series model forecast from 5 to 45 window time steps ahead in
log-scale

5 10 15 20 25 30 35 40 45

ACB 0.014721 0.014147 0.015933 0.025314 0.028773 0.029434 0.034342 0.048010 0.058335

BID 0.024936 0.023140 0.014819 0.012375 0.014865 0.013050 0.014286 0.021603 0.023775

BVH 0.016722 0.022044 0.037414 0.046589 0.047791 0.047427 0.048169 0.052609 0.053467

CII 0.015892 0.010909 0.017354 0.025683 0.038861 0.049060 0.050928 0.056750 0.058097

CTD 0.020805 0.038501 0.043919 0.048860 0.056231 0.062125 0.070704 0.081036 0.082875

CTG 0.008746 0.030208 0.054718 0.065659 0.067614 0.068867 0.068824 0.084200 0.087787

DHG 0.024497 0.018136 0.037780 0.043572 0.043265 0.042221 0.044850 0.047424 0.051320

EIB 0.027591 0.027747 0.023507 0.023673 0.029305 0.030964 0.029256 0.021934 0.018138

FPT 0.012170 0.009933 0.009485 0.009722 0.010321 0.011376 0.011212 0.010736 0.010837

GAS 0.012885 0.016930 0.035988 0.047679 0.052466 0.057323 0.065196 0.078481 0.080781

HCM 0.047436 0.057021 0.064199 0.071993 0.069983 0.069544 0.070894 0.080751 0.081232

HPG 0.031256 0.030599 0.031586 0.044547 0.047608 0.050945 0.055629 0.067218 0.076217

MBB 0.015255 0.010532 0.027337 0.032361 0.031718 0.031117 0.032678 0.046915 0.052013

MSN 0.029451 0.022273 0.014707 0.011364 0.012848 0.012974 0.014851 0.022448 0.026552

PNJ 0.006993 0.007920 0.013121 0.016369 0.022160 0.028659 0.045313 0.065240 0.077773

PPC 0.030586 0.030464 0.024987 0.022773 0.029191 0.037727 0.045555 0.054872 0.056164

REE 0.019733 0.016948 0.015939 0.014662 0.012662 0.013016 0.011561 0.011009 0.013720

SBT 0.009171 0.009984 0.020123 0.023605 0.026334 0.026340 0.024738 0.013508 0.021442

SSI 0.003501 0.010974 0.025759 0.033560 0.035462 0.038449 0.042812 0.058004 0.059730

VCB 0.043887 0.052832 0.048772 0.038443 0.031976 0.029193 0.024631 0.011838 0.017969

VNM 0.049289 0.055314 0.049015 0.043668 0.047589 0.050864 0.054577 0.048458 0.042112
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Figure 8: Error of out-of-sample forecasts in log-scale.

Figure 9: Backtest trading strategy.
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Table 2: Mean squared error of sequence to sequencemodel forecast from 5 to 45 window time steps ahead in
log-scale

5 10 15 20 25 30 35 40 45

ACB 0.001549 0.010649 0.015936 0.036856 0.066454 0.088031 0.065661 0.023986 0.111370

BID 0.002975 0.023858 0.022093 0.055056 0.045212 0.055175 0.123015 0.111880 0.102072

BVH 0.003339 0.007065 0.022930 0.037389 0.038270 0.048385 0.094943 0.131791 0.118588

CII 0.000068 0.000949 0.007197 0.011593 0.008407 0.015061 0.032799 0.024295 0.019871

CTD 0.003564 0.031081 0.093107 0.072614 0.134139 0.160979 0.193552 0.157608 0.180879

CTG 0.000067 0.001404 0.002087 0.008134 0.003509 0.010062 0.014351 0.011942 0.010831

DHG 0.004307 0.015290 0.027839 0.005491 0.031615 0.040781 0.029965 0.034531 0.036360

EIB 0.000734 0.004151 0.005739 0.015192 0.009920 0.018238 0.014715 0.021097 0.012947

FPT 0.000538 0.004052 0.008909 0.011313 0.022583 0.027503 0.039039 0.028022 0.028253

GAS 0.001004 0.021844 0.031094 0.073882 0.090982 0.066480 0.057572 0.106243 0.162174

HCM 0.000771 0.005351 0.012451 0.006651 0.022035 0.030805 0.048325 0.047193 0.037641

HPG 0.000912 0.016714 0.055040 0.013062 0.073548 0.086221 0.099066 0.055516 0.117556

MBB 0.000955 0.008257 0.016460 0.021182 0.035717 0.054560 0.038501 0.064305 0.077589

MSN 0.001165 0.008558 0.019539 0.023428 0.032733 0.051309 0.039536 0.061719 0.071979

PNJ 0.009910 0.006657 0.061987 0.097721 0.094561 0.124379 0.171758 0.173592 0.231800

PPC 0.001150 0.002104 0.014166 0.012028 0.017004 0.027315 0.031092 0.031779 0.035133

REE 0.000612 0.005939 0.008998 0.008640 0.012904 0.017005 0.007903 0.031858 0.039960

SBT 0.005828 0.017245 0.031245 0.023963 0.067473 0.087509 0.049534 0.072302 0.079048

SSI 0.000589 0.004103 0.003022 0.011251 0.014304 0.013024 0.026790 0.025110 0.035506

VCB 0.003926 0.009320 0.032977 0.021303 0.023619 0.066008 0.039739 0.086166 0.084254

VNM 0.003010 0.021958 0.021868 0.043893 0.065320 0.049399 0.068308 0.087976 0.119454

However, there is no package in Python supporting
the test at this time, the test was not carried out to con-
duct appropriated benchmark in terms of statistics. In
addition, Diebold-Mariano (DM) test for comparing
predictive accuracy (not for comparing models) can-
not be applied as it only works for non-nested mod-
els50,51. Hence, we develop a back testing for the best
model as our benchmark suggest (i.e. the proposed
model) with real market data in different asset class
to relax this limitation.

Overall, in same window size, the combination of
structural time series models and Sequence to Se-
quence model are always achieve high performance
than pure structural time series models and Sequence
to Sequence model. However, in some cases, the hy-
brid model cannot capture movement of stock when
market is highly volatile.

CONCLUSION ANDDISCUSSION
In this work, we generally discussed a set of proce-
dures to model and predict price of stocks in Viet-
nam stock market with structural time series models
and Sequence to Sequence model and the combina-
tion of these models. Specifically, we fit stock prices
data with structural time series models then use fitted
data as input feature of Sequence to Sequence model
and generate out-sample prediction. We used output
of models to compare accuracy performance of each
model. We found that our proposed model can over-
come limitations of each model and generate fore-
cast with higher accuracy. The proposed model also
achieves positive results for derivatives trading with
real market data. Hence, the combination of Long
Short-term memory and structural time series model
is applicable to Vietnam stock markets.
Furthermore, deep learning is a powerful approach to
address time series problems. However, without fea-
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Table 3: Mean squared error of proposedmodel forecast from 5 to 45 window time steps ahead in log-scale

5 10 15 20 25 30 35 40 45

ACB 0.000243 0.001528 0.000953 0.002946 0.000294 0.001339 0.002150 0.014070 0.046146

BID 0.002119 0.001047 0.003420 0.002281 0.007414 0.007904 0.039367 0.035262 0.002000

BVH 0.000145 0.007243 0.000876 0.000427 0.011959 0.002539 0.010426 0.017116 0.002917

CII 0.000006 0.002513 0.000787 0.001118 0.001933 0.000599 0.000063 0.002505 0.003436

CTD 0.001580 0.000395 0.000173 0.000329 0.008648 0.000776 0.016954 0.015527 0.002938

CTG 0.001237 0.000776 0.000641 0.002322 0.000283 0.000287 0.000458 0.002171 0.004216

DHG 0.000081 0.002963 0.000692 0.000894 0.005131 0.002980 0.000729 0.000448 0.024931

EIB 0.000022 0.001645 0.000096 0.001451 0.000103 0.001309 0.003419 0.001766 0.014310

FPT 0.000018 0.000009 0.002727 0.000098 0.000629 0.000087 0.004376 0.011860 0.001626

GAS 0.001049 0.000242 0.006162 0.001701 0.007973 0.000451 0.012106 0.007322 0.018421

HCM 0.000120 0.000814 0.000365 0.006616 0.000347 0.000154 0.005450 0.009231 0.003637

HPG 0.001480 0.000214 0.000307 0.000747 0.000886 0.001769 0.005409 0.006507 0.001292

MBB 0.000151 0.000234 0.002842 0.000414 0.003575 0.004369 0.011552 0.002987 0.007829

MSN 0.002896 0.001696 0.000507 0.001222 0.003149 0.006190 0.000697 0.002198 0.000785

PNJ 0.000267 0.003331 0.000503 0.000599 0.010909 0.003138 0.030432 0.022743 0.000275

PPC 0.000106 0.001729 0.001398 0.002341 0.001320 0.000454 0.003241 0.002314 0.000987

REE 0.000349 0.001104 0.000185 0.000304 0.000936 0.000123 0.002099 0.005302 0.011126

SBT 0.000863 0.002671 0.001414 0.000694 0.000526 0.000598 0.000768 0.013324 0.002088

SSI 0.000214 0.000316 0.000056 0.000131 0.001353 0.002919 0.000708 0.000588 0.007224

VCB 0.000439 0.000612 0.000192 0.000652 0.016464 0.007455 0.000140 0.002109 0.026819

VNM 0.000237 0.000130 0.008860 0.005173 0.002549 0.000879 0.000835 0.004840 0.000963

ture engineering, deep learning generates prediction
lower accuracy than structural time series models. In
future work, we will improve that model to achieve
real-time prediction to apply for quantitative trading.
In addition, we believe that Generative Adversarial
Networks (GAN) is a promising approach to apply.
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TÓM TẮT
Thị trường chứng khoán là một kênh huy động vốn quan trọng cho nền kinh tế. Tuy nhiên, thị
trường có một sự mất mát tiềm tàng do sự biến động của giá cổ phiếu để phản ánh các sự kiện
không chắc chắn như tin tức chính trị, nguồn cung và nhu cầu của khối lượng giao dịch hàng
ngày. Có nhiều cách khác nhau để giảm rủi ro như xây dựng và tối ưu hóa danh mục đầu tư, phát
triển chiến lược phòng ngừa rủi ro. Vì thế kỹ thuật dự báo chuỗi thời gian có thể rất hữu ích nhằm
giúp cải thiện hiệu suất lợi nhuận cao hơn trên thị trường chứng khoán. Gần đây, thị trường chứng
khoán Việt Nam ngày càng được chú ý bởi hiệu suất đầu tư và vốn hóa đang được cải thiện. Trong
nghiên cứu này, chúng tôi đề xuất mô hình kết hợp giữa mô hình Sequence to Sequence với kiến
trúc mạng bộ nhớ dài-ngắn (Long Short-Term Memory) của học sâu và mô hình cấu trúc chuỗi
thời gian. Chúng tôi dùng dữ liệu giá của 21 cổ phiếu được niêm yết có giao dịch nhiều nhất trên
sàn giao dịch chứng khoán Hồ Chí Minh (HOSE) và sàn giao dịch chứng khoán Hà Nội (HNX) của
thị trường chứng khoán Việt Nam để đánh giá độ chính xác của mô hình đề xuất với mô hình
Sequence to Sequence và mô hình cấu trúc chuỗi thời gian thuần. Mặt khác, để kiểm tra lại tính
ứng dụng củamôhình trongmôi trường đầu tư thực tế, chúng tôi dùngmôhình đề xuất cho quyết
định mua (Long) hay bán (Short) hợp đồng tương lai VN30F1M (hợp đồng tương lai chỉ số VN30
kỳ hạn một tháng) được niêm yết trên sàn HNX. Kết quả cho thấy mô hình đề xuất kết hợp giữa
Sequence to Sequence với kiến trúc mạng bộ nhớ dài-ngắn và mô hình cấu trúc chuỗi thời gian
đạt hiệu quả cao hơn với sai số nhỏ hơn các mô hình thuần trong việc dự báo giá chứng khoán và
có lời đối với giao dịch hợp đồng tương lai. Nghiên cứu này có ý nghĩa tích cực trong việc đóng
góp vào cơ sở lý luận của dự báo chuỗi thời gian bởi phương pháp được đề xuất trong nghiên
cứu này giúp bỏ qua những giải định khó thoản mãn trong môi trường tài chính thực tế của các
phương pháp hiện tại như Auto-regressive–moving-average model, Generalized Auto-regressive
Conditional Heteroskedasticity. Về mặt ứng dụng, các nhà đầu tư có thể sử dụngmômình để phát
triển các chiến thuật để giao dịch trên thị trường chứng khoán Việt Nam.
Từ khoá: LSTM, Seq2Seq, Mô hình cấu trúc, mô hình kết hợp
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