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ABSTRACT
Recommender systems have undergone a transformative evolution, reshaping user interactions
across diverse domains. Notably, the emphasis on personalized learning paths has grown signif-
icantly in education. This research paper delves into the performance evaluation of User-based
Collaborative Filtering and Content-based recommendation techniques to develop innovative rec-
ommender systems explicitly tailored to Information Systems students. By integrating the primary
dataset collection rooted within the Knowledge - Skill - Attitude framework for students in the
Faculty of Information Systems at the University of Economics and Law, this study assesses how ef-
fectively these two separatemodels develop personalized recommendation systems. Furthermore,
the empirical evaluation of two distinct models, the Collaborative Filtering and Content-Based ap-
proach, across key metrics such as Precision, Recall, and F1-Score, provides a comprehensive view
of their effectiveness in generating a Recommendation System for the University of Economics
and Law. Findings reveal that the Collaborative Filtering approach excels in recision, achieving a
perfect score. At the same time, the Content-based technique demonstrates superior recall capa-
bilities, suggesting its potential to cater to diverse educational needs. This paper also highlights the
transformative role of recommendation systems in higher education, particularly in enhancing stu-
dent engagement through personalized learning experiences and aligning curricula with industry
requirements. Recognizing the limitations inherent in deploying either model independently, fu-
ture research should propose a hybrid approach that combines the strengths of both Collaborative
Filtering and Content-based methods, aiming to mitigate the existing drawbacks of the distinct
model. The findings provide actionable insights for students, universities, and businesses to en-
hance educational content and career development tools and pave the way for future research
on hybrid recommendation methodologies, which promise a more tailored and efficient learning
experience for learners.
Key words: Personalized Learning Path, Information Systems Students, Recommender System,
Collaborative Filtering, Content-Based approach

INTRODUCTION1

The rapid evolution of technology and job markets2

in Information Technology (IT) dramatically trans-3

formed the career development landscape. Students4

must adhere to a continuous learning philosophy to5

remain competitive in the ever-changing Information6

ystems (IS).7

Navigating the vast array of learning options in IS8

poses a significant challenge, as students must discern9

which paths will be most effective for their career ad-10

vancement. Wan and Zhang1 argued that while ben-11

eficial, the abundance of online resources can lead to12

confusion and decision paralysis, underscoring the13

need for tailored guidance. Zhou et al. 2 noted that14

this context necessitates a focused approach toward15

developing Recommender Systems (RS) for Personal-16

ized Learning Paths (PLP), catering specifically to the17

IS domain, as a vital tool for navigating the extensive 18

digital learning environment. Niknam and Thulasir- 19

aman3 stated that the emerging need for these sys- 20

tems is driven by the increasing obsolescence of tra- 21

ditional career planning and educational methods in 22

the IS sector in the face of novel technological break- 23

throughs and market dynamics. 24

This challenge was further amplified by the necessity 25

to align learning choices with the rapidly evolving IS 26

industry demands. Moreover, a study by Joseph et 27

al.4 emphasized the critical connection between these 28

learning opportunities and long-term career goals in 29

IS, demanding a careful balance between immediate 30

skill acquisition and future career objectives. Chen et 31

al.5 recognized the gap between the skills imparted 32

by traditional education and those demanded in the 33

workplace there is a pressing need for recommenda- 34

tion systems that align learning choices with industry 35

Cite this article : Phong T D T, Khang V B, Minh D N, Quynh D T, Quang D V, Thanh H T. Personalized
learningpaths recommendation systemwith collaborativefilteringand content-basedapproaches
. Sci. Tech. Dev. J. - Eco. LawManag. 2024; ():1-10.
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requirements.36

This research aims to evaluate the efficacy of user-37

user collaborative filtering and content-based tech-38

niques in developing innovative recommender sys-39

tems. With this objective, the research methodology40

integrates two distinct primary approaches: user-user41

collaborative filtering and content-based techniques42

to provide personalized learning pathways aligned43

with the Knowledge - Skill - Attitude (KSA) frame-44

work, focusing on students in the Faculty of Informa-45

tion Systems (FIS) at the University of Economics and46

Law (UEL). The objective is to develop customized47

systems for IS students, ensuring a seamless integra-48

tion of techniques for enhanced learning experiences.49

This paper begins with a literature review to estab-50

lish context, followed by a detailed exposition of the51

methodology. Subsequent sections present and dis-52

cuss the research findings, exploring their implica-53

tions for continuous learning in the IS domain. The54

paper concludes with recommendations for future re-55

search initiatives.56

LITERATURE REVIEW57

RS has dynamically transformed user interaction58

across various domains, including education, where59

its role in shaping PLP was increasingly recognized.60

To contextualize this research within this evolving61

landscape, Lu et al.6 emphasized the transformative62

potential of RS in education, highlighting the need63

for high-quality, instructive reviews of current trends.64

These systems enhanced user experience and engage-65

ment by predicting user preferences through various66

algorithms.67

Marappan and Saraswatikaniga7 argued that the Col-68

laborative Filtering (CF) approach is the most estab-69

lished and widely utilized method. This research un-70

derscored its fundamental reliance on the intricate71

dynamics of user-item interactions. This method’s72

strength in identifying patterns among users to sug-73

gest personalized content is pivotal. CF leveraged74

similarities between users and items to generate per-75

sonalized recommendations. Abdi et al.8 underlined76

the effectiveness of Matrix Factorization in CF, par-77

ticularly for large datasets, despite acknowledging the78

hurdles, such as data sparsity, that can affect rec-79

ommendation quality. While the CF approach was80

celebrated for its ability to tailor recommendations81

based on user-item interactions, critics argued that82

it may need to sufficiently capture the full spectrum83

of user preferences, especially in diverse educational84

contexts. A noted by another study9, concerns about85

data sparsity and privacy suggested limitations in CF’s86

applicability without robust data handling and pri- 87

vacy safeguards. Furthermore, the reliance on exist- 88

ing user interactions could narrow learning opportu- 89

nities, overlooking emerging or interdisciplinary con- 90

tent that could enrich the learner’s experience10. 91

On the other hand, Content-Based Recommender 92

Systems (CBRS) recommend items based on a user’s 93

historical item-rating data. Murugan et al.11 noted 94

CBRS’s prevalence in research-paper recommenda- 95

tions but pointed out the ambiguity in their effective- 96

ness compared to CF. This uncertainty, often stem- 97

ming from the challenges in accurately mapping user 98

preferences to content features, was particularly rel- 99

evant to this investigation. In educational settings, 100

where the content is diverse and often complex, en- 101

suring that recommendations are relevant and con- 102

ducive to learning objectives is a significant challenge 103

[12, p. 72]. Lops et al.13 also added that ensuring di- 104

versity and serendipity in recommendations remains 105

challenging for CBRS. Another paper further con- 106

tributed to this dialogue by addressing the need for di- 107

versity and serendipity in CB recommendations7,14. 108

In educational RS, it is essential that the system not 109

only caters to the known preferences of learners but 110

also exposes them to a broader range of learning ma- 111

terials that could spark new interests and learning 112

paths, a point that this research considers. 113

Discussing previous work on RS in PLP, Kirkwood 114

and Price15 discussed previous work on RS in PLP 115

and indicated a gap between theory andpractice in the 116

field of Technology-Enhanced Learning (TEL). This 117

underdevelopment in RS for PLP has been an area our 118

research directly addresses. The author also stressed 119

the need for more research on RS assessment, point- 120

ing out the potential discrepancies between these sys- 121

tems’ perceived and actual effectiveness13. This is 122

considered a deeper evaluation of RS, an aspect that 123

is central to this study. 124

Implementing RS in PLP within educational settings, 125

notably higher education, presents a unique set of 126

challenges and opportunities. A study16 showed that 127

balancing customized learning experiences with cur- 128

riculum frameworks and job requirements remains 129

challenging. Huu et al.17 stated that while RS can 130

build highly personalized learning paths, aligning 131

these with expected learning outcomes and job de- 132

scriptions was a tension this paper seeks to explore. 133

Their observation revealed a discrepancy between 134

theoretical advancements and practical applications 135

in this field. The scarcity of RS in PLP highlights a 136

significant gap where potential benefits are yet to be 137

fully harnessed in real-world educational settings18. 138
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In conclusion, the potential of RS in education to en-139

hance PLP ha been clarified, yet various challenges140

need to be addressed. As a result, this creates a need141

for the adoption of data-driven research to assess the142

effectiveness of RS in educational contexts. This ap-143

proach is also vital for substantiating the potential144

of RS in improving educational outcomes19. Fu-145

ture research would focus on developing RS that are146

not only technologically advanced but also pedagogi-147

cally sound, effectively bridging the gap between user148

needs and the evolving requirements of the modern149

workforce.150

METHODOLOGY151

The current study aims to assess the performance of152

personalized RS by conducting a comparative analysis153

of two distinct models, including the CF and CB. Fig-154

ure 1 outlines five specific steps of the research frame-155

work for this project, beginning with the data-storing156

phase to model evaluation in a structured workflow.157

Dataset Description158

Figure 2 can be considered a comprehensive compi-159

lation of data that provides insights into the compe-160

tency needs of various IT job titles. It includes 7,000161

entries and 13 columns outlining essential IT skills162

and competencies required for each unique job title.163

Each skill was quantified using advancedNatural Lan-164

guage Processing (NLP) techniques to rank each skill165

based on market relevance and demand to ensure a166

comprehensive resource for understanding IT skill re-167

quirements. The research also utilized Bloom’s Tax-168

onomy to ensure a focused, all-inclusive approach to169

ascertain the proposed IT skill requirements.170

The Knowledge Dataset includes 77 courses cover-171

ing fundamental programming principles in special-172

ized fields such as machine learning and cyberse-173

curity. The corresponding ’learning_outcomes’ col-174

umn highlights the practicality and significance of the175

course material in addressing real-world challenges176

and job responsibilities to establish a clear correlation177

between academic pursuits and the professional skill178

sets essential to excel in the IS field.179

The Attitude dataset was established to highlight vital180

personal qualities. The dataset includes ’job_title’ and181

’attitude’ columns that link attributes like problem-182

solving, adaptability, teamwork, and analytical think-183

ing to specific IT roles. The ’attitude’ columns are de-184

rived from an analysis that emphasizing the top three185

qualities of each job title. This underscores the im-186

portance of continuous learning and collaboration in187

navigating the evolving technological landscape and188

executing complex projects.189

Algorithm Implementation 190

User-User-Based Collaborative Filtering 191

This RS utilizes User-Based CF to produce person- 192

alized recommendations by analyzing mutual prefer- 193

ences and user interactions. Heap et al.20 said that 194

this approach adopts the Cosine imilarity - a widely 195

recognized metric calculating the cosine of the angle 196

between two non-zero vectors in amulti-dimensional 197

space, to determine the similarity between user and 198

job profiles. The formula is described as follows: 199

Cosine Similarity =
A
−

B
−

||A
−
||.||B

−
|| (1)

Here, A and B are user interaction vectors. For ex- 200

ample, if User X and Job Y have interacted with skills 201

represented by vectors [3, 2, 0, 5] and [1, 0, 4, 4], re- 202

spectively, the cosine similarity was calculated based 203

on these vectors, providing a quantifiable measure of 204

their preference alignment. Initially, a skill-rating 205

matrix was established, capturing the interactions and 206

preferences of all users within the system. Subse- 207

quently, similarity scores were computed for each user 208

pair using the cosine similarity measure. Recommen- 209

dations were then generated based on an aggregating 210

preferences from from users deemed similar. This ag- 211

gregation was weighted by their respective similarity 212

scores, ensuring that more similar users had a greater 213

influence on the recommendations. 214

Content-based approach 215

Within CB method, Lu21 said that the KMeans clus- 216

tering algorithm is predominantly employed to seg- 217

ment job roles into discrete clusters based on shared 218

characteristics, such as skills and qualifications. The 219

current study utilized multiple criteria for clustering, 220

including skill relevance and job title similarities, re- 221

sulting in informative and valuable clusters that ac- 222

curately mirror the real-world grouping of job roles 223

(Figure 3). 224

CB is a commonly employed technique that enables 225

personalized recommendations to users. This tech- 226

nique involves the computation of similarity between 227

an item and a user based on the item’s features (1). 228

Suriati et al.22 stated an item matrix A with element 229

ai, j, showing the relationship between item i and fea- 230

ture j. Further, a rating matrix R with element ru,i 231

is also required, denoting the rating assigned by user 232

u to item i. Suriati et al.22 stated that the fundamental 233

objective behind this approach is to construct a user 234

profile matrix B with element bi, j signifying the rela- 235

tionship between user u and feature j. This can be ac- 236

complished by multiplying the rating matrix and the 237

item matrix, as demonstrated in equation (2). 238
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Figure 1: Research Framework (Source: Authors)

Figure 2: Skill Dataset (Source: Authors)

B = R× A (2)239

The two types of vectors, including item profile ai and240

user profile bu are, used as indices to construct the241

cosine similarity, indicating the user’s and item’s sim-242

ilarity level. The score range, between -1 and 1, re-243

flects the proximity the proximity between the vec-244

tors, with a score close to 1 indicating a high like-245

lihood of match. Equation (3) is used to predict246

user ratings for items, with x representing the high-247

est achievable rating within the system. This equa-248

tion is based on the similarity score between the user 249

and item vectors and allows us to predict users’ pref- 250

erences and provide recommendations accordingly. 251

Pu,i = (x− t)sim(bu,ai)+ t (3)

Model EvaluationMetrics 252

To assess this RS’s performance, a suite of evaluation 253

metrics including recision, Recall and F1- core were 254

employed. These metrics provide a comprehensive 255
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Figure 3: Job Positions Clustering (Source: Authors)

understanding of the system’s accuracy and effective-256

ness.257

Precision258

Sun et al.23 defined recision in the context of this RS259

as the ratio of the True Positives (i.e., correctly recom-260

mended items) to the total number of items that the261

system classified as positive, which encompassed both262

True Positives (TP) and False Positives (FP). Mathe-263

matically, Precision was expressed as:264

Precision =
T P

T P+FP
(4)

Where TP denoted True Positives and FP denoted FP.265

A higher Precision score indicated of the system’s ef-266

fectiveness in ensuring that the recommended learn-267

ing paths were relevant to the user’s needs and prefer-268

ences.269

Recall270

On the other hand, Solanki et al.24 stated that recall271

measured the system’s capability to identify all rele-272

vant items. It was calculated as the ratio of the TP to273

the sum of TP and False Negatives (FN), represented274

by:275

Recall =
T P

(T P+FN)
(5)

In this scenario, a high Recall score implied that the276

system was adept at capturing a comprehensive range277

of suitable job positions and courses for the user.278

F1 score 279

Chen et al.25 noted that F1-Score provide a balanced 280

system performance view by harmonizing Precision 281

and Recall. This metric was the harmonic mean of 282

Precision and Recall and was formulated as: 283

F1−Score = 2× Precision x Recall
Precision + Recall

(6)

The F1-Score was a pivotal metric, especially in sce- 284

narios where there was an imbalance in the dataset 285

or unequal distribution of classes, as it ensures that 286

the recommendations’ relevance and completeness 287

are accounted for. 288

While it is essential to recognize the limitations of 289

User-Based CF, which relies on existing employee in- 290

teractions, this approach is highly effective at cap- 291

turing and analyzing user preference patterns24,26. 292

On the other hand, the CB approach has been criti- 293

cized for its narrow focus on specific characteristics 294

of items, such as courses or job roles, that employ- 295

ees have previously interacted with or shown interest 296

in. However, this approach is instrumental in align- 297

ing recommendations with specific content attributes. 298

By evaluating these two methods, the research identi- 299

fies the inherent potential of eachmodel to contribute 300

uniquely to the development of RS in the context of 301

employment and educational alignment. Incorporat- 302

ing both approaches allows for a more robust rec- 303

ommendation system capable of addressing a diverse 304
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range of user needs and scenarios 27,28. For instance,305

a hybrid model can mitigate the cold start problem306

associated with CF by utilizing CB recommendations307

for new users or items until sufficient interaction data308

becomes available. Conversely, the potential over-309

specialization of CB can be balanced by CF’s ability310

to introduce diversity and serendipity into the recom-311

mendation mix.312

EXPERIMENTAL RESULT AND313

DISCUSSION314

Experimental R esult315

The empirical evaluation of this paper encompassed316

two distinct models: CF and CB. The performance of317

each model was rigorously assessed across three key318

metrics: Precision, Recall, and F1-Score. The results319

presented herein offer a clear, objective view of the320

models’ effectiveness without delving into speculative321

interpretations.322

Discussion323

Results Analysis324

Collaborative Filtering Model325

The first model under scrutiny was the CF approach.326

The recision metric for this model was recorded at327

a perfect score of 1.00 (Table 1), signifying an ex-328

emplary level of accuracy where every recommended329

item (i.e., learning paths) was deemed relevant. This330

high recision indicates the model’s robustness in fil-331

tering out non-relevant recommendations, ensuring332

that learners are only presented with the most perti-333

nent learning paths.334

However, the Recall score was slightly lower at 0.83335

(Table 1), implying that while the model was highly336

accurate in its recommendations, it did not capture337

the entire spectrum of relevant items. Such a scenario338

might lead to missing out on pertinent learning paths339

that could be beneficial for the learner.340

The F1-Score, which is the harmonic mean of reci-341

sion and Recall, stood at 0.91 (Table 1). This score342

is significant as it demonstrates a balanced trade-off343

between recision and Recall, underscoring the over-344

all effectiveness of the CFmodel in providing relevant345

and comprehensive learning path recommendations.346

Content-Based Model347

The second model, the CB approach, demonstrated348

a slightly lower recision score of 0.90. This indicates349

a minor reduction in accuracy compared to the CF350

model. While most recommendations were relevant,351

only a small fraction may have been partially perti-352

nent to the learners’ needs.353

In terms of Recall, the CBmodel scored 0.86 (Table 1), 354

marginally outperforming the CF model. This higher 355

Recall suggests that the CB model was more effec- 356

tive in identifying a broader range of relevant learning 357

paths, albeit with a slight compromise in recision. 358

The F1-Score for the CB model was calculated at 0.84 359

(Table 1). Although slightly lower than the CFmodel, 360

this score still reflects a robust performance, indicat- 361

ing that the CB model is a viable alternative, partic- 362

ularly in scenarios where a broader identification of 363

relevant items is prioritized over precision. 364

Implications 365

For University 366

Duan et al.29 identified the integration of recom- 367

mendation systems within higher education frame- 368

works as a pivotal strategy for enhancing curriculum 369

relevance and ensuring alignment with labor mar- 370

ket demands. Management factors such as strate- 371

gic planning, stakeholder engagement, and continu- 372

ous curriculum assessment play critical roles in this 373

integration process28,29. Strategic planning involves 374

the adoption of forward-looking models that facili- 375

tate early identification of students’ career goals and 376

academic interests, allowing universities, specifically 377

in the context of this study, the UEL, to tailor their 378

programs to better meet both student aspirations and 379

the evolving needs of the industry. Forsythe30 pro- 380

vided the insight that stakeholder engagement, in- 381

volving collaboration with industry partners, educa- 382

tors, and students, is essential for effectively under- 383

standing and responding to market trends and edu- 384

cational expectations. 385

Furthermore, continuous curriculum assessment en- 386

sures that academic offerings remain dynamic and 387

responsive to changes in the labor market, thereby 388

maintaining the applicability and value of the skills 389

and knowledge taught30,31. The adoption of such sys- 390

tems necessitates universities to remain vigilant and 391

responsive to current industry trends to preserve the 392

relevance of their courses. The significance of leverag- 393

ing technology in education, as highlighted by Smith 394

and Worsfold31, is supported by empirical evidence. 395

Studies have shown that TEL can improve student en- 396

gagement, higher retention rates, and better learn- 397

ing outcomes10. Furthermore, Alamri et al. [ 32, 398

p.339]stated that PLP has been increased student sat- 399

isfaction and academic achievement. 400

FIS can also utilize data analytics to monitor and an- 401

alyze trends within both student performance and in- 402

dustry requirements. This approach supports the ad- 403

justment of courses that are theoretically sound and 404
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Table 1: Model EvaluationMetrics (Source: Authors)

Collaborative Filtering Content- ased Approach

Precision 1.00 0.90

Recall 0.83 0.86

F1-Score 0.91 0.84

practically relevant. Alamri et al. [ 32, p.331] dis-405

cussed the potential of learning technology models406

to support personalization within blended learning407

environments in higher education. Studies by Cu-408

bit33 confirmed that personalized learning environ-409

ments increase student engagement and achievement,410

illustrating the positive impact of technology-enabled411

personalization. Similarly, research by Vallée et al.34412

suggested that students in online and blended learn-413

ing settings often achieve better outcomes compared414

to traditional classroom settings, thanks to the adapt-415

ability offered by TEL. Further supporting this, Freitas416

et al.35 also found that personalized e-learning sys-417

tems contribute to higher retention rates in higher ed-418

ucation by addressing individual learning preferences419

and sustaining student interest.420

Moreover, implementing RS should be considered421

part of a broader institutional change towards a more422

learner-centered approach. This shift requires a re-423

evaluation of teaching methodologies, assessment424

practices, and the overall student experience. The425

challenges and solutions associated with AI-based426

personalized e-learning systems are outlined in a427

study that point to the necessity of aligning educa-428

tional technologies with pedagogical strategies and429

learning outcomes36.430

For Students431

Xiao et al.37 argued that students stand to benefit im-432

mensely from personalized educational experiences433

facilitated by RS. Such systems enable students to434

make informed decisions regarding their educational435

and career trajectories, enhancing their ability to align436

their training programs and course selections with437

their long-term professional goals. This personalized438

approach not only aids in students’ professional and439

personal development but also fosters a more engag-440

ing and relevant learning experience. As illustrated441

by Alamri et al. [32, p.345], the ability to tailor one’s442

academic path directly contributes to improved learn-443

ing outcomes and better preparation for the job mar-444

ket. Longitudinal studies, such as those by the Bill445

& Melinda Gates Foundation, reinforced the value of446

personalized learning, indicating improved standard-447

ized test scores among students and increased con-448

fidence in their college and career prospects. This449

confidence, rooted in personalized educational expe- 450

riences, paves the way for long-term success in both 451

educational and professional arenas. 452

Furthermore, early exposure to career exploration 453

platforms can significantly impact high school stu- 454

dents, enabling them to make more informed deci- 455

sions about their future education and employment 456

opportunities. For instance, platforms like Naviance 457

or Career Cruising offer personalized assessments 458

that match students’ interests and strengths with po- 459

tential careers, guiding them toward relevant edu- 460

cational programs38. By engaging with these plat- 461

forms, students can explore various career options, 462

understand the educational requirements for each 463

role, and plan their high school courses accordingly. 464

This informed decision-making process ensures that 465

students are better prepared for post-secondary edu- 466

cation and the workforce with confidence and clarity, 467

aligning their academic pursuits with their career as- 468

pirations and the current job market demands39. 469

For Businesses 470

From an employment perspective, RS would revo- 471

lutionize the recruitment process by facilitating the 472

identification of graduates whose education and skill 473

sets align with specific job requirements. This align- 474

ment not only enhances the efficiency of the re- 475

cruitment process but also optimizes resource utiliza- 476

tion. Companies benefit from a streamlined recruit- 477

ment process that is more closely aligned with in- 478

dustry trends, ultimately improving the quality and 479

speed of the hiring process. The integration of such 480

systems signifies a shift towards more data-driven 481

and customized educational experiences, underscor- 482

ing the mutual benefits of aligning educational pro- 483

grams with real-world applications andmarket needs. 484

However, it is imperative to critically examine their 485

role in perpetuating or mitigating biases during the 486

hiring process. Studies such as those by Gian- 487

francesco et al.40 revealed the inherent risk of these 488

systems reinforcing existing societal and organiza- 489

tional biases, particularly when algorithms are trained 490

on historical data that may reflect prejudiced hiring 491

practices. This requires the need for deploying bias 492

correctionmechanisms and ensuring that recommen- 493

dation systems are regularly audited for fairness. 494
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This research makes significant theoretical and prac-495

tical contributions to personalized learning and RS496

in IS. The study advances the understanding of how497

CF and CB approach can be tailored and integrated498

within the context of PLP. It also provides actionable499

insights for educators and developers on implement-500

ing these RSs to enhance educational content and ca-501

reer development tools. The research has the potential502

to pave the way for future studies on hybrid recom-503

mendation methodology, which suggest a new direc-504

tion for combining different approaches to improve505

the personalization and effectiveness of learning paths506

in I and other fields.507

CONCLUSION AND FUTUREWORK508

Conclusion509

This project evaluated the accuracy and performance510

of the learning path RS using User-based CF and CB511

techniques separately. The research’s findings con-512

firm the initial hypothesis that CF and CB models513

would each exhibit distinct strengths in PLP. The for-514

mermodel achieved an absolute recision rate of 100%,515

while the latter excelled in Recall, identifying 85% of516

relevant learning paths. These insights extend beyond517

I , suggesting potential applications in diverse edu-518

cational fields, from digital marketing to healthcare519

training. The capability of CF and CB model to adapt520

to changing user preferences and the dynamic nature521

of I sector content underscores their profound util-522

ity in real-world applications, ensuring that learning523

recommendations remain relevant and personalized,524

crucial for IS students seeking to stay abreast of tech-525

nological advancements and emerging trends.526

Limitations527

When used independently, the performance of the528

proposed models has some specific limitations indi-529

cated by the application. For CF, essential barriers like530

data sparsity may reduce its ability to suggest new or531

uncommon learning paths. This obstacle arises be-532

cause CF relies heavily on existing user interactions,533

making it difficult to suggest items with few or no534

ratings41. Conversely, the CB model, while effec-535

tive in matching specific content attributes, may over-536

look the broader preferences and behavioral patterns537

of users, potentially limiting its ability to meet the di-538

verse needs of learners in the IS.539

Future Development540

Future efforts will focus on developing a hybrid541

model, combining the behavioral analysis strength542

of CF with the precise content matching of the CB543

technique. This hybrid approach aims to mitigate 544

the drawbacks of both models by integrating their 545

strengths and proposing amore accurate and compre- 546

hensive PLP RS42. This approach directly addresses 547

the research objective of evaluating the efficacy of dif- 548

ferent RS models in enhancing personalized educa- 549

tional experiences, aligningmore closelywith the pro- 550

gressed needs of IT education and career develop- 551

ment. In addition, the current evaluation metrics, 552

namely Precision, Recall, and F1-Score, focus primar- 553

ily on the relevance and utility of the recommendation 554

models. Moving forward, to better evaluate the hybrid 555

model and provide a more nuanced understanding of 556

its efficacy, it is crucial to incorporate metrics such 557

as Mean Absolute Error (MAE), Root Mean Square 558

Error (RMSE), and Normalized Discounted Cumula- 559

tive Gain (NDCG). This metrics expansion will sup- 560

plement the current evaluation framework, providing 561

a deeper understanding of this research’s findings and 562

the practical application of RS in education settings. 563
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tích hợp bộ dữ liệu chính dựa trên mô hình Kiến thức - Kỹ năng - Thái độ cho sinh viên tại Trường
Đại học Kinh tế - Luật, nghiên cứu này đánh giá mức độ hiệu quả của hai mô hình riêng biệt trong
việc phát triển các hệ thống khuyến nghị cá nhân hóa. Hơn nữa, việc đánh giá thực nghiệm của
hai mô hình này, gồm phương pháp lọc cộng tác và kỹ thuật dựa trên nội dung, qua các chỉ số như
độ chính xác, độ phủ và điểm F1, cung cấp cái nhìn toàn diện về hiệu quả của chúng trong việc xây
dựng hệ thống khuyến nghị cho trường Đại học Kinh tế - Luật. Kết quả cho thấy phương pháp lọc
cộng tác đạt điểm tuyệt đối về độ chính xác. Trong khi đó, kỹ thuật dựa trên nội dung thể hiện chỉ
số độ phủ vượt trội, cho thấy tiềm năng của nó trong việc đáp ứng đa dạng các nhu cầu trong giáo
dục. Bài nghiên cứu này cũng nhấn mạnh vai trò chuyển đổi của các hệ thống khuyến nghị trong
giáo dục của bậc đại học, đặc biệt là trong việc nâng cao sự tham gia của sinh viên thông qua trải
nghiệm học tập cá nhân hóa và điều chỉnh chương trình học phù hợp với yêu cầu của các ngành
công nghiệp. Nhận thức được những hạn chế khi triển khai từngmô hình riêng lẻ, trong tương lai,
nghiên cứu đề xuất một phương pháp lai kết hợp những ưu điểm của cả phương pháp lọc cộng
tác và kỹ thuật dựa trên nội dung, nhằm giảm thiểu những nhược điểm hiện tại của từngmô hình.
Những kết quả này cung cấp thông tin hữu ích cho sinh viên, các trường đại học và doanh nghiệp
để cải thiện nội dung giáo dục và các công cụ phát triển nghề nghiệp, đồng thời mở đường cho
các nghiên cứu trong tương lai về các phương pháp khuyến nghị lai, hứa hẹnmang lại trải nghiệm
học tập phù hợp và hiệu quả hơn cho người học.
Từ khoá: Lộ trình học tập cá nhân hóa, sinh viên Hệ thống Thông tin, Hệ khuyến nghị, Lọc cộng
tác, Lọc dựa trên nội dung

Trích dẫn bài báo này: Phong T D T, Khang V B, Minh D N, Quỳnh D T, Quang D V, Thành H T. Hệ thống
khuyến nghị lộ trình học cá nhân hóa với các phương pháp lọc cộng tác và dựa trên nội dung. Sci.
Tech. Dev. J. - Eco. LawManag. 2024; ():1-1.
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