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ABSTRACT

Recommender systems have undergone a transformative evolution, reshaping user interactions
across diverse domains. Notably, the emphasis on personalized learning paths has grown signif-
icantly in education. This research paper delves into the performance evaluation of User-based
Collaborative Filtering and Content-based recommendation techniques to develop innovative rec-
ommender systems explicitly tailored to Information Systems students. By integrating the primary
dataset collection rooted within the Knowledge - Skill - Attitude framework for students in the
Faculty of Information Systems at the University of Economics and Law, this study assesses how ef-
fectively these two separate models develop personalized recommendation systems. Furthermore,
the empirical evaluation of two distinct models, the Collaborative Filtering and Content-Based ap-
proach, across key metrics such as Precision, Recall, and F1-Score, provides a comprehensive view
of their effectiveness in generating a Recommendation System for the University of Economics
and Law. Findings reveal that the Collaborative Filtering approach excels in recision, achieving a
perfect score. At the same time, the Content-based technique demonstrates superior recall capa-
bilities, suggesting its potential to cater to diverse educational needs. This paper also highlights the
transformative role of recommendation systems in higher education, particularly in enhancing stu-
dent engagement through personalized learning experiences and aligning curricula with industry
requirements. Recognizing the limitations inherent in deploying either model independently, fu-
ture research should propose a hybrid approach that combines the strengths of both Collaborative
Filtering and Content-based methods, aiming to mitigate the existing drawbacks of the distinct
model. The findings provide actionable insights for students, universities, and businesses to en-
hance educational content and career development tools and pave the way for future research
on hybrid recommendation methodologies, which promise a more tailored and efficient learning
experience for learners.

Key words: Personalized Learning Path, Information Systems Students, Recommender System,
Collaborative Filtering, Content-Based approach

 INTRODUCTION

2 The rapid evolution of technology and job markets
in Information Technology (IT) dramatically trans-

w

formed the career development landscape. Students

~

«

must adhere to a continuous learning philosophy to
remain competitive in the ever-changing Information

o

ystems (IS).

~

Navigating the vast array of learning options in IS

©

©

poses a significant challenge, as students must discern
which paths will be most effective for their career ad-

o

vancement. Wan and Zhang ' argued that while ben-

o

eficial, the abundance of online resources can lead to
confusion and decision paralysis, underscoring the

@

need for tailored guidance. Zhou et al.? noted that

>

this context necessitates a focused approach toward

o)

o

developing Recommender Systems (RS) for Personal-
ized Learning Paths (PLP), catering specifically to the

S

IS domain, as a vital tool for navigating the extensive
digital learning environment. Niknam and Thulasir-
aman?® stated that the emerging need for these sys-
tems is driven by the increasing obsolescence of tra-
ditional career planning and educational methods in
the IS sector in the face of novel technological break-
throughs and market dynamics.

This challenge was further amplified by the necessity
to align learning choices with the rapidly evolving IS
industry demands. Moreover, a study by Joseph et
al.* emphasized the critical connection between these
learning opportunities and long-term career goals in
IS, demanding a careful balance between immediate
skill acquisition and future career objectives. Chen et
al.”> recognized the gap between the skills imparted
by traditional education and those demanded in the
workplace there is a pressing need for recommenda-
tion systems that align learning choices with industry
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requirements.

This research aims to evaluate the efficacy of user-
user collaborative filtering and content-based tech-
niques in developing innovative recommender sys-
tems. With this objective, the research methodology
integrates two distinct primary approaches: user-user
collaborative filtering and content-based techniques
to provide personalized learning pathways aligned
with the Knowledge - Skill - Attitude (KSA) frame-
work, focusing on students in the Faculty of Informa-
tion Systems (FIS) at the University of Economics and
Law (UEL). The objective is to develop customized
systems for IS students, ensuring a seamless integra-
tion of techniques for enhanced learning experiences.
This paper begins with a literature review to estab-
lish context, followed by a detailed exposition of the
methodology. Subsequent sections present and dis-
cuss the research findings, exploring their implica-
tions for continuous learning in the IS domain. The
paper concludes with recommendations for future re-

search initiatives.

LITERATURE REVIEW

RS has dynamically transformed user interaction
across various domains, including education, where
its role in shaping PLP was increasingly recognized.
To contextualize this research within this evolving
landscape, Lu et al.® emphasized the transformative
potential of RS in education, highlighting the need
for high-quality, instructive reviews of current trends.
These systems enhanced user experience and engage-
ment by predicting user preferences through various
algorithms.

Marappan and Saraswatikaniga”’ argued that the Col-
laborative Filtering (CF) approach is the most estab-
lished and widely utilized method. This research un-
derscored its fundamental reliance on the intricate
dynamics of user-item interactions. This method’s
strength in identifying patterns among users to sug-
gest personalized content is pivotal. CF leveraged
similarities between users and items to generate per-
sonalized recommendations. Abdi et al.® underlined
the effectiveness of Matrix Factorization in CE par-
ticularly for large datasets, despite acknowledging the
hurdles, such as data sparsity, that can affect rec-
ommendation quality. While the CF approach was
celebrated for its ability to tailor recommendations
based on user-item interactions, critics argued that
it may need to sufficiently capture the full spectrum
of user preferences, especially in diverse educational
contexts. A noted by another study®, concerns about
data sparsity and privacy suggested limitations in CF’s

applicability without robust data handling and pri-
vacy safeguards. Furthermore, the reliance on exist-
ing user interactions could narrow learning opportu-
nities, overlooking emerging or interdisciplinary con-
tent that could enrich the learner’s experience '°.

On the other hand, Content-Based Recommender
Systems (CBRS) recommend items based on a user’s

1.1 noted

historical item-rating data. Murugan et a
CBRS’s prevalence in research-paper recommenda-
tions but pointed out the ambiguity in their effective-
ness compared to CF. This uncertainty, often stem-
ming from the challenges in accurately mapping user
preferences to content features, was particularly rel-
evant to this investigation. In educational settings,
where the content is diverse and often complex, en-
suring that recommendations are relevant and con-
ducive to learning objectives is a significant challenge
['2, p- 72]. Lops et al. 13 also added that ensuring di-
versity and serendipity in recommendations remains
challenging for CBRS. Another paper further con-
tributed to this dialogue by addressing the need for di-
versity and serendipity in CB recommendations”'4.
In educational RS, it is essential that the system not
only caters to the known preferences of learners but
also exposes them to a broader range of learning ma-
terials that could spark new interests and learning
paths, a point that this research considers.

Discussing previous work on RS in PLP, Kirkwood
and Price'® discussed previous work on RS in PLP
and indicated a gap between theory and practice in the
field of Technology-Enhanced Learning (TEL). This
underdevelopment in RS for PLP has been an area our
research directly addresses. The author also stressed
the need for more research on RS assessment, point-
ing out the potential discrepancies between these sys-
tems’ perceived and actual effectiveness'®. This is
considered a deeper evaluation of RS, an aspect that
is central to this study.

Implementing RS in PLP within educational settings,
notably higher education, presents a unique set of
challenges and opportunities. A study'® showed that
balancing customized learning experiences with cur-
riculum frameworks and job requirements remains
challenging. Huu et al.!” stated that while RS can
build highly personalized learning paths, aligning
these with expected learning outcomes and job de-
scriptions was a tension this paper seeks to explore.
Their observation revealed a discrepancy between
theoretical advancements and practical applications
in this field. The scarcity of RS in PLP highlights a
significant gap where potential benefits are yet to be
fully harnessed in real-world educational settings ‘8.
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In conclusion, the potential of RS in education to en-
hance PLP ha been clarified, yet various challenges
need to be addressed. As a result, this creates a need
for the adoption of data-driven research to assess the
effectiveness of RS in educational contexts. This ap-
proach is also vital for substantiating the potential
of RS in improving educational outcomes!®. Fu-
ture research would focus on developing RS that are
not only technologically advanced but also pedagogi-
cally sound, effectively bridging the gap between user
needs and the evolving requirements of the modern
workforce.

METHODOLOGY

The current study aims to assess the performance of
personalized RS by conducting a comparative analysis
of two distinct models, including the CF and CB. Fig-
ure 1 outlines five specific steps of the research frame-
work for this project, beginning with the data-storing
phase to model evaluation in a structured workflow.

Dataset Description

Figure 2 can be considered a comprehensive compi-
lation of data that provides insights into the compe-
tency needs of various IT job titles. It includes 7,000
entries and 13 columns outlining essential IT skills
and competencies required for each unique job title.
Each skill was quantified using advanced Natural Lan-
guage Processing (NLP) techniques to rank each skill
based on market relevance and demand to ensure a
comprehensive resource for understanding IT skill re-
quirements. The research also utilized Bloom’s Tax-
onomy to ensure a focused, all-inclusive approach to
ascertain the proposed IT skill requirements.

The Knowledge Dataset includes 77 courses cover-
ing fundamental programming principles in special-
ized fields such as machine learning and cyberse-
curity. The corresponding ’learning outcomes’ col-
umn highlights the practicality and significance of the
course material in addressing real-world challenges
and job responsibilities to establish a clear correlation
between academic pursuits and the professional skill
sets essential to excel in the IS field.

The Attitude dataset was established to highlight vital
personal qualities. The dataset includes job_title’ and
‘attitude’ columns that link attributes like problem-
solving, adaptability, teamwork, and analytical think-
ing to specific IT roles. The ’attitude’ columns are de-
rived from an analysis that emphasizing the top three
qualities of each job title. This underscores the im-
portance of continuous learning and collaboration in
navigating the evolving technological landscape and
executing complex projects.

Algorithm Implementation
User-User-Based Collaborative Filtering

This RS utilizes User-Based CF to produce person-
alized recommendations by analyzing mutual prefer-
ences and user interactions. Heap et al.?? said that
this approach adopts the Cosine imilarity - a widely
recognized metric calculating the cosine of the angle
between two non-zero vectors in a multi-dimensional
space, to determine the similarity between user and
job profiles. The formula is described as follows:

AB
[lAIl-1/B]]

Cosine Similarity =

1

Here, A and B are user interaction vectors. For ex-
ample, if User X and Job Y have interacted with skills
represented by vectors [3, 2, 0, 5] and [1, 0, 4, 4], re-
spectively, the cosine similarity was calculated based
on these vectors, providing a quantifiable measure of
their preference alignment. Initially, a skill-rating
matrix was established, capturing the interactions and
preferences of all users within the system. Subse-
quently, similarity scores were computed for each user
pair using the cosine similarity measure. Recommen-
dations were then generated based on an aggregating
preferences from from users deemed similar. This ag-
gregation was weighted by their respective similarity
scores, ensuring that more similar users had a greater
influence on the recommendations.

Content-based approach

Within CB method, Lu?! said that the KMeans clus-
tering algorithm is predominantly employed to seg-
ment job roles into discrete clusters based on shared
characteristics, such as skills and qualifications. The
current study utilized multiple criteria for clustering,
including skill relevance and job title similarities, re-
sulting in informative and valuable clusters that ac-
curately mirror the real-world grouping of job roles
(Figure 3).

CB is a commonly employed technique that enables
personalized recommendations to users. This tech-
nique involves the computation of similarity between
an item and a user based on the item’s features (1).
Suriati et al.?? stated an item matrix A with element
a; j, showing the relationship between item i and fea-
ture j. Further, a rating matrix R with element 1, ;
is also required, denoting the rating assigned by user
u to item i. Suriati et al.2? stated that the fundamental
objective behind this approach is to construct a user
profile matrix B with element b; ; signifying the rela-
tionship between user u and feature j. This can be ac-
complished by multiplying the rating matrix and the
item matrix, as demonstrated in equation (2).
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Figure 2: Skill Dataset (Source: Authors)

B=RxA(2)

The two types of vectors, including item profile a; and
user profile b, are, used as indices to construct the
cosine similarity, indicating the user’s and item’s sim-
ilarity level. The score range, between -1 and 1, re-
flects the proximity the proximity between the vec-
tors, with a score close to 1 indicating a high like-
lihood of match. Equation (3) is used to predict
user ratings for items, with x representing the high-

est achievable rating within the system. This equa-

tion is based on the similarity score between the user
and item vectors and allows us to predict users’ pref-
erences and provide recommendations accordingly.

Py = (x—1)sim(by,a;) +t (3)

Model Evaluation Metrics

To assess this RS’s performance, a suite of evaluation
metrics including recision, Recall and F1- core were
employed. These metrics provide a comprehensive
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understanding of the system’s accuracy and effective-
ness.

Precision

Sun et al.?® defined recision in the context of this RS
as the ratio of the True Positives (i.e., correctly recom-
mended items) to the total number of items that the
system classified as positive, which encompassed both
True Positives (TP) and False Positives (FP). Mathe-
matically, Precision was expressed as:

_ TP
TP+FP

Where TP denoted True Positives and FP denoted FP.
A higher Precision score indicated of the system’s ef-

(4)

Precision =

fectiveness in ensuring that the recommended learn-
ing paths were relevant to the user’s needs and prefer-
ences.

Recall

On the other hand, Solanki et al.** stated that recall
measured the system’s capability to identify all rele-
vant items. It was calculated as the ratio of the TP to
the sum of TP and False Negatives (FN), represented
by:

TP

Recall = ————
(TP+FN)

(5)
In this scenario, a high Recall score implied that the
system was adept at capturing a comprehensive range
of suitable job positions and courses for the user.

F1 score

Chen et al.?> noted that F1-Score provide a balanced
system performance view by harmonizing Precision
and Recall. This metric was the harmonic mean of
Precision and Recall and was formulated as:

Precision x Recall

F1—Score = 2 x (6)

Precision + Recall

The F1-Score was a pivotal metric, especially in sce-
narios where there was an imbalance in the dataset
or unequal distribution of classes, as it ensures that
the recommendations’ relevance and completeness
are accounted for.

While it is essential to recognize the limitations of
User-Based CF, which relies on existing employee in-
teractions, this approach is highly effective at cap-
turing and analyzing user preference patterns>%2°,
On the other hand, the CB approach has been criti-
cized for its narrow focus on specific characteristics
of items, such as courses or job roles, that employ-
ees have previously interacted with or shown interest
in. However, this approach is instrumental in align-
ing recommendations with specific content attributes.
By evaluating these two methods, the research identi-
fies the inherent potential of each model to contribute
uniquely to the development of RS in the context of
employment and educational alignment. Incorporat-
ing both approaches allows for a more robust rec-
ommendation system capable of addressing a diverse
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range of user needs and scenarios?”?%. For instance,
a hybrid model can mitigate the cold start problem
associated with CF by utilizing CB recommendations
for new users or items until sufficient interaction data
becomes available. Conversely, the potential over-
specialization of CB can be balanced by CF’s ability
to introduce diversity and serendipity into the recom-
mendation mix.

EXPERIMENTAL RESULT AND
DISCUSSION

Experimental R esult

The empirical evaluation of this paper encompassed
two distinct models: CF and CB. The performance of
each model was rigorously assessed across three key
metrics: Precision, Recall, and F1-Score. The results
presented herein offer a clear, objective view of the
models’ effectiveness without delving into speculative
interpretations.

Discussion
Results Analysis

Collaborative Filtering Model

The first model under scrutiny was the CF approach.
The recision metric for this model was recorded at
a perfect score of 1.00 (Table 1), signifying an ex-
emplary level of accuracy where every recommended
item (i.e., learning paths) was deemed relevant. This
high recision indicates the model’s robustness in fil-
tering out non-relevant recommendations, ensuring
that learners are only presented with the most perti-
nent learning paths.

However, the Recall score was slightly lower at 0.83
(Table 1), implying that while the model was highly
accurate in its recommendations, it did not capture
the entire spectrum of relevant items. Such a scenario
might lead to missing out on pertinent learning paths
that could be beneficial for the learner.

The F1-Score, which is the harmonic mean of reci-
sion and Recall, stood at 0.91 (Table 1). This score
is significant as it demonstrates a balanced trade-off
between recision and Recall, underscoring the over-
all effectiveness of the CF model in providing relevant
and comprehensive learning path recommendations.
Content-Based Model

The second model, the CB approach, demonstrated
a slightly lower recision score of 0.90. This indicates
a minor reduction in accuracy compared to the CF
model. While most recommendations were relevant,
only a small fraction may have been partially perti-
nent to the learners’ needs.

In terms of Recall, the CB model scored 0.86 (Table 1),
marginally outperforming the CF model. This higher
Recall suggests that the CB model was more effec-
tive in identifying a broader range of relevant learning
paths, albeit with a slight compromise in recision.
The F1-Score for the CB model was calculated at 0.84
(Table 1). Although slightly lower than the CF model,
this score still reflects a robust performance, indicat-
ing that the CB model is a viable alternative, partic-
ularly in scenarios where a broader identification of
relevant items is prioritized over precision.

Implications

For University

Duan et al.? identified the integration of recom-
mendation systems within higher education frame-
works as a pivotal strategy for enhancing curriculum
relevance and ensuring alignment with labor mar-
ket demands. Management factors such as strate-
gic planning, stakeholder engagement, and continu-
ous curriculum assessment play critical roles in this
integration process>®2°. Strategic planning involves
the adoption of forward-looking models that facili-
tate early identification of students’ career goals and
academic interests, allowing universities, specifically
in the context of this study, the UEL, to tailor their
programs to better meet both student aspirations and
the evolving needs of the industry. Forsythe* pro-
vided the insight that stakeholder engagement, in-
volving collaboration with industry partners, educa-
tors, and students, is essential for effectively under-
standing and responding to market trends and edu-
cational expectations.

Furthermore, continuous curriculum assessment en-
sures that academic offerings remain dynamic and
responsive to changes in the labor market, thereby
maintaining the applicability and value of the skills

and knowledge taught 3031

. The adoption of such sys-
tems necessitates universities to remain vigilant and
responsive to current industry trends to preserve the
relevance of their courses. The significance of leverag-
ing technology in education, as highlighted by Smith
and Worsfold®!, is supported by empirical evidence.
Studies have shown that TEL can improve student en-
gagement, higher retention rates, and better learn-
ing outcomes ', [’
p-339]stated that PLP has been increased student sat-

isfaction and academic achievement.

Furthermore, Alamri et al.

FIS can also utilize data analytics to monitor and an-
alyze trends within both student performance and in-
dustry requirements. This approach supports the ad-
justment of courses that are theoretically sound and
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Table 1: Model Evaluation Metrics (Source: Authors)

Collaborative Filtering

Precision 1.00
Recall 0.83
F1-Score 0.91

Content- ased Approach
0.90
0.86

0.84

practically relevant. Alamri et al. [, p.331] dis-
cussed the potential of learning technology models
to support personalization within blended learning
environments in higher education. Studies by Cu-
bit3 confirmed that personalized learning environ-
ments increase student engagement and achievement,
illustrating the positive impact of technology-enabled
personalization. Similarly, research by Vallée et al.>*
suggested that students in online and blended learn-
ing settings often achieve better outcomes compared
to traditional classroom settings, thanks to the adapt-
ability offered by TEL. Further supporting this, Freitas

et al. >

also found that personalized e-learning sys-
tems contribute to higher retention rates in higher ed-
ucation by addressing individual learning preferences
and sustaining student interest.

Moreover, implementing RS should be considered
part of a broader institutional change towards a more
learner-centered approach. This shift requires a re-
evaluation of teaching methodologies, assessment
practices, and the overall student experience. The
challenges and solutions associated with Al-based
personalized e-learning systems are outlined in a
study that point to the necessity of aligning educa-
tional technologies with pedagogical strategies and
learning outcomes °.

For Students

Xiao et al.” argued that students stand to benefit im-
mensely from personalized educational experiences
facilitated by RS. Such systems enable students to
make informed decisions regarding their educational
and career trajectories, enhancing their ability to align
their training programs and course selections with
their long-term professional goals. This personalized
approach not only aids in students’ professional and
personal development but also fosters a more engag-
ing and relevant learning experience. As illustrated
by Alamri et al. [32, p.345], the ability to tailor one’s
academic path directly contributes to improved learn-
ing outcomes and better preparation for the job mar-
ket. Longitudinal studies, such as those by the Bill
& Melinda Gates Foundation, reinforced the value of
personalized learning, indicating improved standard-
ized test scores among students and increased con-
fidence in their college and career prospects. This

confidence, rooted in personalized educational expe-
riences, paves the way for long-term success in both
educational and professional arenas.

Furthermore, early exposure to career exploration
platforms can significantly impact high school stu-
dents, enabling them to make more informed deci-
sions about their future education and employment
opportunities. For instance, platforms like Naviance
or Career Cruising offer personalized assessments
that match students’ interests and strengths with po-
tential careers, guiding them toward relevant edu-

cational programs>®.

By engaging with these plat-
forms, students can explore various career options,
understand the educational requirements for each
role, and plan their high school courses accordingly.
This informed decision-making process ensures that
students are better prepared for post-secondary edu-
cation and the workforce with confidence and clarity,
aligning their academic pursuits with their career as-
pirations and the current job market demands .

For Businesses

From an employment perspective, RS would revo-
lutionize the recruitment process by facilitating the
identification of graduates whose education and skill
sets align with specific job requirements. This align-
ment not only enhances the efficiency of the re-
cruitment process but also optimizes resource utiliza-
tion. Companies benefit from a streamlined recruit-
ment process that is more closely aligned with in-
dustry trends, ultimately improving the quality and
speed of the hiring process. The integration of such
systems signifies a shift towards more data-driven
and customized educational experiences, underscor-
ing the mutual benefits of aligning educational pro-
grams with real-world applications and market needs.
However, it is imperative to critically examine their
role in perpetuating or mitigating biases during the

hiring process.
1.40

Studies such as those by Gian-
francesco et al.*” revealed the inherent risk of these
systems reinforcing existing societal and organiza-
tional biases, particularly when algorithms are trained
on historical data that may reflect prejudiced hiring
practices. This requires the need for deploying bias
correction mechanisms and ensuring that recommen-

dation systems are regularly audited for fairness.
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This research makes significant theoretical and prac-
tical contributions to personalized learning and RS
in IS. The study advances the understanding of how
CF and CB approach can be tailored and integrated
within the context of PLP. It also provides actionable
insights for educators and developers on implement-
ing these RSs to enhance educational content and ca-
reer development tools. The research has the potential
to pave the way for future studies on hybrid recom-
mendation methodology, which suggest a new direc-
tion for combining different approaches to improve
the personalization and effectiveness of learning paths
inI and other fields.

CONCLUSION AND FUTURE WORK

Conclusion

This project evaluated the accuracy and performance
of the learning path RS using User-based CF and CB
techniques separately. The researchs findings con-
firm the initial hypothesis that CF and CB models
would each exhibit distinct strengths in PLP. The for-
mer model achieved an absolute recision rate of 100%,
while the latter excelled in Recall, identifying 85% of
relevant learning paths. These insights extend beyond
I, suggesting potential applications in diverse edu-
cational fields, from digital marketing to healthcare
training. The capability of CF and CB model to adapt
to changing user preferences and the dynamic nature
of I sector content underscores their profound util-
ity in real-world applications, ensuring that learning
recommendations remain relevant and personalized,
crucial for IS students seeking to stay abreast of tech-
nological advancements and emerging trends.

Limitations

When used independently, the performance of the
proposed models has some specific limitations indi-
cated by the application. For CF, essential barriers like
data sparsity may reduce its ability to suggest new or
uncommon learning paths. This obstacle arises be-
cause CF relies heavily on existing user interactions,
making it difficult to suggest items with few or no
ratings*!. Conversely, the CB model, while effec-
tive in matching specific content attributes, may over-
look the broader preferences and behavioral patterns
of users, potentially limiting its ability to meet the di-
verse needs of learners in the IS.

Future Development

Future efforts will focus on developing a hybrid
model, combining the behavioral analysis strength
of CF with the precise content matching of the CB

technique. This hybrid approach aims to mitigate
the drawbacks of both models by integrating their
strengths and proposing a more accurate and compre-
hensive PLP RS2, This approach directly addresses
the research objective of evaluating the efficacy of dif-
ferent RS models in enhancing personalized educa-
tional experiences, aligning more closely with the pro-
gressed needs of IT education and career develop-
ment. In addition, the current evaluation metrics,
namely Precision, Recall, and F1-Score, focus primar-
ily on the relevance and utility of the recommendation
models. Moving forward, to better evaluate the hybrid
model and provide a more nuanced understanding of
its efficacy, it is crucial to incorporate metrics such
as Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), and Normalized Discounted Cumula-
tive Gain (NDCG). This metrics expansion will sup-
plement the current evaluation framework, providing
a deeper understanding of this research’s findings and
the practical application of RS in education settings.
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TOM TAT

Céc hé théng khuyén nghi da trai qua mot su phat trién vugt trdi, gilp tai dinh hinh tuong tac clia
ngudi dung trén nhiéu linh vuc khac nhau. Bac biét, viéc chi trong phét trién cac 16 trinh hoc tap
c& nhan hoa da tang 1én dang ké trong linh vuc gido duc. Bai nghién ctiu nay di sau vao danh gié
hiéu sudt clia cac ky thuat khuyén nghi dua trén ndi dung va loc cong tac dua trén ngudi ding,
nhdam phat trién hé théng khuyén nghi sang tao va dugc thiét ké riéng cho sinh vién. Bang cach
tich hop bd dir liéu chinh dua trén mé hinh Kién thic - Ky ndng - Thai dé cho sinh vién tai Truong
Dai hoc Kinh té - Luat, nghién ctu nay danh gid muc dé hiéu qua ctia hai ma hinh riéng biét trong
viéc phét trién cac hé thong khuyén nghi ca nhan hda. Hon nla, viec danh gia thuc nghiém ctia
hai mé hinh nay, gém phuong phép loc cong tac va ky thuat dua trén ndi dung, qua cac chi s6 nhu
do6 chinh xac, 3o phu va diém F1, cung cdp cai nhin toan dién vé hiéu qua clia ching trong viéc xay
dung hé théng khuyén nghi cho truong Bai hoc Kinh té - Luat. Két qua cho thdy phuong phap loc
cong tac dat diém tuyét déi vé do chinh xéac. Trong khi do, ky thuat dua trén ndi dung thé hién chi
s6 do phu vuat troi, cho thay tiém nang clia né trong viéc dap iing da dang cac nhu cau trong gido
duc. Bai nghién ctiu nay cing nhan manh vai tro chuyén déi clia cac hé théng khuyén nghi trong
gido duc clia bac dai hoc, ddc biét la trong viéc nang cao su tham gia cla sinh vién théng qua trai
nghiém hoc tap ca nhan hdéa va diéu chinh chuong trinh hoc phu hop véi yéu cau clia cdc nganh
coéng nghiép. Nhan thic duge nhiing han ché khi trién khai tiing mé hinh riéng lé, trong tuong lai,
nghién cliu dé xudt mot phuong phap lai két hop nhimg uu diém clia ca phuong phap loc cong
tac va ky thuat dua trén ndi dung, nhdm gidm thiéu nhimg nhugc diém hién tai cda tiing mo hinh.
Nhimng két qua nay cung cap thong tin hiiu ich cho sinh vién, cac trudng dai hoc va doanh nghiép
dé cai thién noi dung gido duc va cac cong cu phat trién nghé nghiép, dong thai mé dudng cho
cac nghién clu trong tuong lai vé cac phuong phap khuyén nghi lai, htia hen mang lai trai nghiém
hoc tép phu hgp va hiéu qua hon cho ngudi hoc.

T khoa: Lo trinh hoc tap ca nhan hoda, sinh vién Hé théng Thong tin, Hé khuyén nghj, Loc cong
tac, Loc dua trén ndi dung

Trich dan bai bao nay: Phong T D T, Khang V B, Minh D N, Quynh D T, Quang D V, Thanh H T. Hé théng
khuyén nghi 16 trinh hoc ca nhan héa véi cac phuong phap loc céng tac va dua trén néi dung. Sci.
Tech. Dev. J. - Eco. Law Manag. 2024; ():1-1.
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